
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4822278/publications.pdf Version: 2024-02-01

ΕΠΟΕΝΙΑ ΕΤΚΙΝΑ

#	Article	IF	CITATIONS
1	Design and Reflection Help Students Develop Scientific Abilities: Learning in Introductory Physics Laboratories. Journal of the Learning Sciences, 2010, 19, 54-98.	2.9	164
2	Scientific abilities and their assessment. Physical Review Physics Education Research, 2006, 2, .	1.7	156
3	College physics students' epistemological self-reflection and its relationship to conceptual learning. American Journal of Physics, 2002, 70, 1249-1258.	0.7	103
4	Using introductory labs to engage students in experimental design. American Journal of Physics, 2006, 74, 979-986.	0.7	100
5	Pedagogical content knowledge and preparation of high school physics teachers. Physical Review Physics Education Research, 2010, 6, .	1.7	96
6	Do students use and understand free-body diagrams?. Physical Review Physics Education Research, 2009, 5, .	1.7	80
7	Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning. Physical Review Physics Education Research, 2007, 3, .	1.7	78
8	Millikan award lecture: Students of physics—Listeners, observers, or collaborative participants in physics scientific practices?. American Journal of Physics, 2015, 83, 669-679.	0.7	75
9	The Role of Models in Physics Instruction. Physics Teacher, 2006, 44, 34-39.	0.3	72
10	Encouraging and analyzing student questions in a large physics course: Meaningful patterns for instructors. Journal of Research in Science Teaching, 2003, 40, 776-791.	3.3	68
11	Acting like a physicist: Student approach study to experimental design. Physical Review Physics Education Research, 2007, 3, .	1.7	63
12	"Force,―ontology, and language. Physical Review Physics Education Research, 2009, 5, .	1.7	56
13	How long does it take? A study of student acquisition of scientific abilities. Physical Review Physics Education Research, 2008, 4, .	1.7	52
14	The Importance of Language in Students' Reasoning About Heat in Thermodynamic Processes. International Journal of Science Education, 2015, 37, 759-779.	1.9	35
15	Defining and Developing "Critical Thinking―Through Devising and Testing Multiple Explanations of the Same Phenomenon. Physics Teacher, 2015, 53, 432-437.	0.3	35
16	Organizing physics teacher professional education around productive habit development: A way to meet reform challenges. Physical Review Physics Education Research, 2017, 13, .	2.9	29
17	A New Way of Using the Interactive Whiteboard in a High School Physics Classroom: A Case Study. Research in Science Education, 2018, 48, 465-489.	2.3	27
18	Design of an assessment to probe teachers' content knowledge for teaching: An example from energy in high school physics. Physical Review Physics Education Research, 2018, 14, .	2.9	26

#	Article	IF	CITATIONS
19	Pushing to the edge: Rutgers astrophysics institute motivates talented high school students. Journal of Research in Science Teaching, 2003, 40, 958-985.	3.3	25
20	Investigative Science Learning Environment: Using the processes of science and cognitive strategies to learn physics. , 0, , .		25
21	Case Study: Students' Use of Multiple Representations in Problem Solving. AIP Conference Proceedings, 2006, , .	0.4	24
22	Laboratory materials: Affordances or constraints?. Journal of Research in Science Teaching, 2011, 48, 1010-1025.	3.3	21
23	Implementing an epistemologically authentic approach to student-centered inquiry learning. Physical Review Physics Education Research, 2020, 16, .	2.9	21
24	A simple optics experiment to engage students in scientific inquiry. American Journal of Physics, 2013, 81, 815-822.	0.7	20
25	Light-Emitting Diodes: Exploration of Underlying Physics. Physics Teacher, 2014, 52, 212-218.	0.3	20
26	Doing science by waving hands: Talk, symbiotic gesture, and interaction with digital content as resources in student inquiry. Physical Review Physics Education Research, 2017, 13, .	2.9	18
27	Light-Emitting Diodes: Learning New Physics. Physics Teacher, 2015, 53, 210-216.	0.3	17
28	Using action research to improve learning and formative assessment to conduct research. Physical Review Physics Education Research, 2009, 5, .	1.7	16
29	Light-Emitting Diodes: A Hidden Treasure. Physics Teacher, 2014, 52, 94-99.	0.3	16
30	Examining physics teacher understanding of systems and the role it plays in supporting student energy reasoning. American Journal of Physics, 2019, 87, 510-519.	0.7	12
31	How Students Combine Resources to Make Conceptual Breakthroughs. Research in Science Education, 2020, 50, 1119-1141.	2.3	12
32	Fostering Self-Reflection and Meaningful Learning: Earth Science Professional Development for Middle School Science Teachers. Journal of Science Teacher Education, 2008, 19, 455-475.	2.5	11
33	Light-Emitting Diodes: Solving Complex Problems. Physics Teacher, 2015, 53, 291-297.	0.3	11
34	Developing Assessments of Content Knowledge for Teaching Using Evidence-centered Design. Educational Assessment, 2020, 25, 91-111.	1.5	11
35	Physical Phenomena in Real Time. Science, 2010, 330, 605-606.	12.6	10
36	Kinaesthetic learning activities and learning about solar cells. Physics Education, 2013, 48, 578-585.	0.5	10

#	Article	IF	CITATIONS
37	When And How Do Students Engage In Sense-Making In A Physics Lab?. AIP Conference Proceedings, 2007, , .	0.4	9
38	Bubbles that Change the Speed of Sound. Physics Teacher, 2012, 50, 458-460.	0.3	8
39	Introducing Ill-Structured Problems in Introductory Physics Recitations. , 2007, , .		6
40	Spending Time On Design: Does It Hurt Physics Learning?. , 2007, , .		6
41	Design labs: Studentsâ \in $^{\mathrm{M}}$ expectations and reality. AIP Conference Proceedings, 2006, , .	0.4	4
42	Design And Non-design Labs: Does Transfer Occur?. , 2007, , .		4
43	Implementing Reform: Teachersâ \in $^{ m M}$ Beliefs about Students and the Curriculum. , 2009, , .		4
44	Framework for using modern devices in introductory physics courses. European Journal of Physics, 2019, 40, 065702.	0.6	4
45	The minilab as a tool in physics instruction. Physics Teacher, 2000, 38, 136-138.	0.3	3
46	Development of Scientific Abilities in a Large Class. AIP Conference Proceedings, 2005, , .	0.4	3
47	Reformed Physics Instruction Through The Eyes Of Students. AIP Conference Proceedings, 2007, , .	0.4	3
48	Squaring the Circle: A Mathematically Rigorous Physics First. Physics Teacher, 2008, 46, 222-227.	0.3	3
49	In search of alignment: Matching learning goals and class assessments. , 2012, , .		3
50	The mysteries of conductive thread: physics and engineering combined. Physics Education, 2019, 54, 045015.	0.5	3
51	Comparing students' flow states during apparatus-based versus video-based lab activities. European Journal of Physics, 0, , .	0.6	3
52	Physics on rollerblades. Physics Teacher, 1998, 36, 32-35.	0.3	2
53	Introducing astrophysics research to high school students. Physics Education, 1999, 34, 300-305.	0.5	2
54	Studying Transfer Of Scientific Reasoning Abilities. AIP Conference Proceedings, 2007, , .	0.4	2

#	Article	IF	CITATIONS
55	From Physics to Biology: Helping Students Attain All-Terrain Knowledge. , 2007, , .		2
56	Investigative Science Learning Environment: Learn Physics by Practicing Science. , 2020, , 359-383.		2
57	Planar motion, complex numbers, and falling leaves: An intriguing minilab. Physics Teacher, 1998, 36, 135-138.	0.3	1
58	How Russian physics teachers are prepared. Physics Teacher, 2000, 38, 416-417.	0.3	1
59	Searching for "Preparation for Future Learning―in Physics. , 2009, , .		1
60	Studentsâ \in [™] use of resources in understanding solar cells. , 2013, , .		1
61	The Intertwined Roles of Teacher Content Knowledge and Knowledge of Scientific Practices in Support of a Science Learning Community. Advances in STEM Education, 2018, , 17-48.	0.5	1
62	Response to the paper "Leaving the â€~One True Path': Teaching physics without single correct answersâ€ Physics Teacher, 2022, 60, 164-165.	0.3	1
63	Are Students' Responses and Behaviors Consistent?. , 2009, , .		0
64	Searching For Evidence Of Student Understanding. , 2010, , .		0