Prashanth K Poddutoori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/482210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoinduced Charge Separation in a Ferroceneâ^'Aluminum(III) Porphyrinâ^'Fullerene Supramolecular Triad. Journal of Physical Chemistry B, 2010, 114, 14348-14357.	2.6	64
2	Longâ€Lived Charge Separation in Novel Axial Donor–Porphyrin–Acceptor Triads Based on Tetrathiafulvalene, Aluminum(III) Porphyrin and Naphthalenediimide. Chemistry - A European Journal, 2013, 19, 3148-3161.	3.3	53
3	Sequential Charge Separation in Two Axially Linked Phenothiazineâ^'Aluminum(III) Porphyrinâ^'Fullerene Triads. Journal of Physical Chemistry A, 2011, 115, 709-717.	2.5	47
4	Axially assembled photosynthetic reaction center mimics composed of tetrathiafulvalene, aluminum(<scp>iii</scp>) porphyrin and fullerene entities. Nanoscale, 2015, 7, 12151-12165.	5.6	47
5	Interfacial electron transfer in photoanodes based on phosphorus(v) porphyrin sensitizers co-deposited on SnO2 with the Ir(III)Cp* water oxidation precatalyst. Journal of Materials Chemistry A, 2015, 3, 3868-3879.	10.3	47
6	Modulation of Energy Transfer into Sequential Electron Transfer upon Axial Coordination of Tetrathiafulvalene in an Aluminum(III) Porphyrin–Free-Base Porphyrin Dyad. Inorganic Chemistry, 2015, 54, 8482-8494.	4.0	41
7	Spinâ^'Spin Interactions in Porphyrin-Based Monoverdazyl Radical Hybrid Spin Systems. Inorganic Chemistry, 2010, 49, 3516-3524.	4.0	38
8	Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin–fullerene conjugates. Nanoscale, 2016, 8, 8333-8344.	5.6	38
9	Decelerating Charge Recombination Using Fluorinated Porphyrins in <i>N,N</i> -Bis(3,4,5-trimethoxyphenyl)aniline—Aluminum(III) Porphyrin—Fullerene Reaction Center Models. Journal of the American Chemical Society, 2020, 142, 10008-10024.	13.7	33
10	Aluminum(III) porphyrin: A unique building block for artificial photosynthetic systems. Coordination Chemistry Reviews, 2021, 429, 213561.	18.8	30
11	Charge-separation in panchromatic, vertically positioned bis(donor) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 10, 20723-20739.) 347 Td (s 5.6	styryl)BODIF 29
12	A charge transfer state induced by strong exciton coupling in a cofacial μ-oxo-bridged porphyrin heterodimer. Physical Chemistry Chemical Physics, 2021, 23, 960-970.	2.8	25
13	Bimetallic Iron(3+) Spin-Crossover Complexes Containing a 2,2′-Bithienyl Bridging bis-QsalH Ligand. Inorganic Chemistry, 2009, 48, 6109-6116.	4.0	24
14	Ultrafast charge separation and charge stabilization in axially linked â€~tetrathiafulvalene–aluminum(<scp>iii</scp>) porphyrin–gold(<scp>iii</scp>) porphyrin' reaction center mimics. Physical Chemistry Chemical Physics, 2015, 17, 26346-26358.	2.8	24
15	High-Energy Charge-Separated States by Reductive Electron Transfer Followed by Electron Shift in the Tetraphenylethylene–Aluminum(III) Porphyrin–Fullerene Triad. Journal of Physical Chemistry C, 2019, 123, 131-143.	3.1	24
16	Phosphorus(V) Porphyrin-Manganese(II) Terpyridine Conjugates: Synthesis, Spectroscopy, and Photo-Oxidation Studies on a SnO ₂ Surface. Inorganic Chemistry, 2016, 55, 11383-11395.	4.0	21
17	Triplet electron transfer and spin polarization in a palladium porphyrin–fullerene conjugate. Physical Chemistry Chemical Physics, 2018, 20, 28223-28231.	2.8	20
18	Light-induced hole transfer in a hypervalent phosphorus(V) octaethylporphyrin bearing an axially linked bis(ethylenedithio)tetrathiafulvalene. Journal of Porphyrins and Phthalocyanines, 2010, 14, 178-187.	0.8	17

4

#	Article	IF	CITATIONS
19	Charge Stabilization in High-Potential Zinc Porphyrin-Fullerene via Axial Ligation of Tetrathiafulvalene. Journal of Physical Chemistry C, 2018, 122, 13636-13647.	3.1	16
20	Exclusive triplet electron transfer leading to long-lived radical ion-pair formation in an electron rich platinum porphyrin covalently linked to fullerene dyad. Chemical Communications, 2020, 56, 6058-6061.	4.1	16
21	Unique molecular geometries of reduced 4- and 5-coordinate zinc complexes stabilised by diiminopyridine ligand. Dalton Transactions, 2016, 45, 13440-13448.	3.3	14
22	Interfacial Electron Transfer Followed by Photooxidation in <i>N</i> , <i>N</i> -Bis(<i>p</i> -anisole)aminopyridine–Aluminum(III) Porphyrin–Titanium(IV) Oxide Self-Assembled Photoanodes. Journal of Physical Chemistry C, 2017, 121, 14484-14497.	3.1	12
23	Light-Induced Spin Polarization in Porphyrin-Based Donor–Acceptor Dyads and Triads. Applied Magnetic Resonance, 2013, 44, 301-318.	1.2	11
24	Reversible Solution Ï€â€Ðimerization and Long Multicenter Bonding in a Stable Phenoxyl Radical. Chemistry - A European Journal, 2018, 24, 14906-14910.	3.3	11
25	Electron spin polarization in an Al(III) porphyrin complex with an axially bound nitroxide radical. Journal of Chemical Physics, 2019, 151, 204303.	3.0	11
26	Electron Transfer Pathways in a Tetrathiafulvalene-Aluminum(III) Porphyrin-Free-Base Porphyrin Triad Studied Using Electron Spin Polarization. Applied Magnetic Resonance, 2016, 47, 511-526.	1.2	9
27	Spin-Selective Electron Transfer and Charge Recombination in Self-Assembled Porphyrin Naphthalenediimide Dyads. Applied Magnetic Resonance, 2012, 42, 41-55.	1.2	7
28	A Transient EPR Study of Electron Transfer in Tetrathiafulvalene-Aluminum(III) Porphyrin-Anthraquinone Supramolecular Triads. Zeitschrift Fur Physikalische Chemie, 2017, 231, 293-310.	2.8	7
29	Antimony(+5) ion induced tunable intramolecular charge transfer in hypervalent antimony(<scp>v</scp>) porphyrins. Dalton Transactions, 2022, 51, 5890-5903.	3.3	7
30	Surface anchored self-assembled reaction centre mimics as photoanodes consisting of a secondary electron donor, aluminium(<scp>iii</scp>) porphyrin and TiO ₂ semiconductor. Physical Chemistry Chemical Physics, 2019, 21, 19612-19622.	2.8	6
31	Rational Design and Synthesis of OEP and TPP Centered Phosphorus(V) Porphyrin–Naphthalene Conjugates: Triplet Formation via Rapid Charge Recombination. Inorganic Chemistry, 2021, 60, 17952-17965.	4.0	6
32	Factors Controlling the Redox Potential of ZnCe6 in an Engineered Bacterioferritin Photochemical â€~Reaction Centre'. PLoS ONE, 2013, 8, e68421.	2.5	5
33	Di- and trivalent iron complexes with redox-active 1-(2-pyridylazo)-2-phenanthrol (papl). Polyhedron, 2017, 123, 462-469.	2.2	5
34	Fluorinated aluminum(III) porphyrins: Synthesis, spectroscopy, electrochemistry and photochemistry. Journal of Porphyrins and Phthalocyanines, 2021, 25, 456-468.	0.8	5
35	Structural features and electronic properties of a cupric complex with redox active 1-(2-pyridylazo)-2-phenanthrol (papl). Polyhedron, 2016, 108, 74-79.	2.2	4

Time-Resolved EPR in Artificial Photosynthesis. , 2017, , 359-387.

#	Article	IF	CITATIONS
37	Sequential electron transfer in a bis(styryl)BODIPY-aluminum(III) porphyrin – naphthalenediimide reaction center mimic. Journal of Porphyrins and Phthalocyanines, 2022, 26, 407-417.	0.8	4
38	Sequential Electron Transfer in a BODIPY–Aluminum(III) Porphyrin–C60 Triad Studied by Transient EPR Spectroscopy. Applied Magnetic Resonance, 0, , 1.	1.2	3
39	Excited state dynamics and electron transfer in a phosphorus(V) porphyrin – TEMPO conjugate. Journal of Chemical Sciences, 2021, 133, 1.	1.5	2
40	Photoinduced energy and electron transfer in a cofacial aluminum(III) porphyrin – Phosphorus(V) porphyrin heterodimer. Journal of Photochemistry and Photobiology, 2021, 8, 100069.	2.5	2
41	Charge Stabilization in Axially Linked Donor – Aluminum(III) Porphyrin – Fullerene Reaction Center Models. ECS Meeting Abstracts, 2021, MA2021-01, 781-781.	0.0	0
42	Phosphorus(V) Porphyrin: A Reductive Electron Quencher in Donor-Acceptor Systems. ECS Meeting Abstracts, 2022, MA2022-01, 980-980.	0.0	0