
Marcello Ceci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4821012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166046.	3.8	10
2	Are microRNAs responsible for cardiac hypertrophy in fish and mammals? What we can learn in the activation process in a zebrafish ex vivo model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165896.	3.8	7
3	ALS skin fibroblasts reveal oxidative stress and ERK1/2-mediated cytoplasmic localization of TDP-43. Cellular Signalling, 2020, 70, 109591.	3.6	18
4	Ribosomal RACK1 promotes proliferation of neuroblastoma cells independently of global translation upregulation. Cellular Signalling, 2019, 53, 102-110.	3.6	17
5	Micro RNAs are involved in activation of epicardium during zebrafish heart regeneration. Cell Death Discovery, 2018, 4, 41.	4.7	10
6	Upregulation of eIF6 inhibits cardiac hypertrophy induced by phenylephrine. Biochemical and Biophysical Research Communications, 2018, 495, 601-606.	2.1	8
7	Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. Aquatic Toxicology, 2018, 204, 144-159.	4.0	69
8	Heart regeneration is regulates by key micro RNAs from fish to mammals: what it can learned about the epicardial cells activation during the regeneration in zebrafish. Cell Death and Disease, 2018, 9, 650.	6.3	5
9	Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Reviews in the Neurosciences, 2018, 30, 45-66.	2.9	25
10	The face of epicardial and endocardial derived cells in zebrafish. Experimental Cell Research, 2018, 369, 166-175.	2.6	7
11	Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with RACK1 on polyribosomes. Human Molecular Genetics, 2017, 26, 1407-1418.	2.9	78
12	Neutralization of Nerve Growth Factor Impairs Proliferation and Differentiation of Adult Neural Progenitors in the Subventricular Zone. Stem Cells, 2014, 32, 2516-2528.	3.2	30
13	RACK1 Is a Ribosome Scaffold Protein for \hat{I}^2 -actin mRNA/ZBP1 Complex. PLoS ONE, 2012, 7, e35034.	2.5	46
14	Intranasal "painless―Human Nerve Growth Factors Slows Amyloid Neurodegeneration and Prevents Memory Deficits in App X PS1 Mice. PLoS ONE, 2012, 7, e37555.	2.5	60
15	Taking Pain Out of NGF: A "Painless―NGF Mutant, Linked to Hereditary Sensory Autonomic Neuropathy Type V, with Full Neurotrophic Activity. PLoS ONE, 2011, 6, e17321.	2.5	84
16	In vitro receptor binding properties of a "painless―NGF mutein, linked to hereditary sensory autonomic neuropathy type V. Biochemical and Biophysical Research Communications, 2010, 391, 824-829.	2.1	47
17	MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. Journal of Clinical Investigation, 2010, 120, 2805-2816.	8.2	291
18	MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. Journal of Clinical Investigation, 2010, 120, 3735-3735.	8.2	2

MARCELLO CECI

#	Article	IF	CITATIONS
19	Interval Training Normalizes Cardiomyocyte Function, Diastolic Ca ²⁺ Control, and SR Ca ²⁺ Release Synchronicity in a Mouse Model of Diabetic Cardiomyopathy. Circulation Research, 2009, 105, 527-536.	4.5	173
20	Akt Increases Sarcoplasmic Reticulum Ca2+ Cycling by Direct Phosphorylation of Phospholamban at Thr17. Journal of Biological Chemistry, 2009, 284, 28180-28187.	3.4	62
21	Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. Journal of Cellular Physiology, 2008, 214, 316-321.	4.1	204
22	Carbon Monoxide Levels Experienced by Heavy Smokers Impair Aerobic Capacity and Cardiac Contractility and Induce Pathological Hypertrophy. Inhalation Toxicology, 2008, 20, 635-646.	1.6	23
23	Myocardial sarcoplasmic reticulum Ca ²⁺ ATPase function is increased by aerobic interval training. European Journal of Cardiovascular Prevention and Rehabilitation, 2008, 15, 145-148.	2.8	56
24	Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. Journal of Molecular and Cellular Cardiology, 2007, 43, 354-361.	1.9	106
25	Cardiac-specific overexpression of E40K active Akt prevents pressure overload-induced heart failure in mice by increasing angiogenesis and reducing apoptosis. Cell Death and Differentiation, 2007, 14, 1060-1062.	11.2	40
26	Increased phospholamban phosphorylation limits theÂforce–frequency response inÂtheÂMLP–/– mouse with heart failure. Journal of Molecular and Cellular Cardiology, 2006, 40, 350-360.	1.9	18
27	Phosphorylation of regulatory proteins CaMK, PLN and AKT precedes cardiomyocyte adaptation to exercise training. Journal of Molecular and Cellular Cardiology, 2006, 40, 1006.	1.9	3
28	Sen34p depletion blocks tRNA splicing in vivo and delays rRNA processing. Biochemical and Biophysical Research Communications, 2005, 337, 89-94.	2.1	25
29	Molecular determinants of the physiological adaptation to stress in the cardiomyocyte: a focus on AKT. Journal of Molecular and Cellular Cardiology, 2004, 37, 905-912.	1.9	44
30	Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature, 2003, 426, 579-584.	27.8	375
31	Formation of nuclear matrix filaments by p27BBP/eIF6. Biochemical and Biophysical Research Communications, 2002, 295, 295-299.	2.1	5