List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820707/publications.pdf Version: 2024-02-01

		553	794
340	66,601	126	247
papers	citations	h-index	g-index
		_	
355 all docs	355 docs citations	355 times ranked	66553 citing authors

IOHAN AUMERY

#	Article	IF	CITATIONS
1	Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell, 2006, 127, 1109-1122.	13.5	3,603
2	AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458, 1056-1060.	13.7	2,654
3	Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439, 484-489.	13.7	1,818
4	Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology, 2012, 13, 225-238.	16.1	1,633
5	TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis. Cell Metabolism, 2009, 10, 167-177.	7.2	1,465
6	A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nature Genetics, 1998, 20, 284-287.	9.4	1,262
7	PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology, 2009, 20, 98-105.	1.2	1,238
8	Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase. Science, 2011, 334, 806-809.	6.0	1,165
9	NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metabolism, 2015, 22, 31-53.	7.2	1,153
10	Targeting bile-acid signalling for metabolic diseases. Nature Reviews Drug Discovery, 2008, 7, 678-693.	21.5	1,084
11	Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metabolism, 2011, 14, 612-622.	7.2	1,072
12	Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. American Journal of Clinical Nutrition, 2011, 93, 884S-890S.	2.2	974
13	The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cell Metabolism, 2012, 15, 838-847.	7.2	957
14	The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell, 2013, 154, 430-441.	13.5	951
15	NAD ⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 2016, 352, 1436-1443.	6.0	907
16	International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacological Reviews, 2006, 58, 726-741.	7.1	869
17	Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature, 2012, 485, 123-127.	13.7	867
18	Mitonuclear protein imbalance as a conserved longevity mechanism. Nature, 2013, 497, 451-457.	13.7	846

#	Article	IF	CITATIONS
19	Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. Journal of Lipid Research, 1996, 37, 907-25.	2.0	837
20	Activation of peroxisome proliferator-activated receptor induces fatty acid Â-oxidation in skeletal muscle and attenuates metabolic syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15924-15929.	3.3	776
21	Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle. Cell Metabolism, 2010, 11, 213-219.	7.2	752
22	The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling Pathways. Endocrine Reviews, 2010, 31, 194-223.	8.9	731
23	PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metabolism, 2011, 13, 461-468.	7.2	673
24	Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nature Medicine, 2016, 22, 879-888.	15.2	668
25	Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metabolism, 2008, 8, 347-358.	7.2	665
26	A guide to analysis of mouse energy metabolism. Nature Methods, 2012, 9, 57-63.	9.0	655
27	Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. Journal of Cell Biology, 2017, 216, 2027-2045.	2.3	590
28	Nuclear Receptors and the Control of Metabolism. Annual Review of Physiology, 2003, 65, 261-311.	5.6	551
29	Mitonuclear communication in homeostasis and stress. Nature Reviews Molecular Cell Biology, 2016, 17, 213-226.	16.1	533
30	Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism. Obesity, 2009, 17, 1671-1677.	1.5	501
31	Enhancing mitochondrial proteostasis reduces amyloid-l² proteotoxicity. Nature, 2017, 552, 187-193.	13.7	471
32	TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading. Cell Metabolism, 2011, 14, 747-757.	7.2	469
33	The metabolic footprint of aging in mice. Scientific Reports, 2011, 1, 134.	1.6	440
34	Adipose-Specific Knockout of raptor Results in Lean Mice with Enhanced Mitochondrial Respiration. Cell Metabolism, 2008, 8, 399-410.	7.2	434
35	Sirtuin Functions in Health and Disease. Molecular Endocrinology, 2007, 21, 1745-1755.	3.7	409
36	SRC-1 and TIF2 Control Energy Balance between White and Brown Adipose Tissues. Cell, 2002, 111, 931-941.	13.5	401

#	Article	IF	CITATIONS
37	Sirtuins: The â€~ <i>magnificent seven</i> ', function, metabolism and longevity. Annals of Medicine, 2007, 39, 335-345.	1.5	394
38	PPARÎ ³ ANDGLUCOSEHOMEOSTASIS. Annual Review of Nutrition, 2002, 22, 167-197.	4.3	393
39	Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Reports, 2015, 10, 1681-1691.	2.9	385
40	Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes and Development, 2012, 26, 1926-1944.	2.7	370
41	Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. European Heart Journal, 2015, 36, 3404-3412.	1.0	354
42	Caloric restriction, SIRT1 and longevity. Trends in Endocrinology and Metabolism, 2009, 20, 325-331.	3.1	352
43	NAD+ homeostasis in health and disease. Nature Metabolism, 2020, 2, 9-31.	5.1	351
44	AMP-activated protein kinase and its downstream transcriptional pathways. Cellular and Molecular Life Sciences, 2010, 67, 3407-3423.	2.4	336
45	The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. Journal of Hepatology, 2011, 54, 1263-1272.	1.8	328
46	Targeting Sirtuin 1 to Improve Metabolism: All You Need Is NAD ⁺ ?. Pharmacological Reviews, 2012, 64, 166-187.	7.1	326
47	Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin <scp>B</scp> 3. EMBO Molecular Medicine, 2014, 6, 721-731.	3.3	326
48	Pharmacological approaches to restore mitochondrial function. Nature Reviews Drug Discovery, 2013, 12, 465-483.	21.5	323
49	Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochemical and Biophysical Research Communications, 2007, 362, 793-798.	1.0	302
50	De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature, 2018, 563, 354-359.	13.7	302
51	The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism, 2019, 1, 595-603.	5.1	302
52	Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19507-19512.	3.3	299
53	NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease. Cell Metabolism, 2014, 19, 1042-1049.	7.2	293
54	Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology, 2016, 63, 1190-1204.	3.6	289

#	Article	IF	CITATIONS
55	Activation of PPARδalters lipid metabolism in db/db mice. FEBS Letters, 2000, 473, 333-336.	1.3	287
56	E2Fs Regulate Adipocyte Differentiation. Developmental Cell, 2002, 3, 39-49.	3.1	284
57	The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. Journal of Experimental Biology, 2014, 217, 137-143.	0.8	284
58	A Unique PPARÎ ³ Ligand with Potent Insulin-Sensitizing yet Weak Adipogenic Activity. Molecular Cell, 2001, 8, 737-747.	4.5	279
59	Transcriptional coregulators in the control of energy homeostasis. Trends in Cell Biology, 2007, 17, 292-301.	3.6	279
60	Two Conserved Histone Demethylases Regulate Mitochondrial Stress-Induced Longevity. Cell, 2016, 165, 1209-1223.	13.5	279
61	Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2610-2615.	3.3	271
62	The gut microbiota influences skeletal muscle mass and function in mice. Science Translational Medicine, 2019, 11, .	5.8	271
63	Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4320-4325.	3.3	263
64	NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nature Communications, 2016, 7, 13103.	5.8	261
65	Novel Potent and Selective Bile Acid Derivatives as TGR5 Agonists: Biological Screening, Structureâ^'Activity Relationships, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2008, 51, 1831-1841.	2.9	259
66	Systems proteomics of liver mitochondria function. Science, 2016, 352, aad0189.	6.0	257
67	Analysis of mtDNA/nDNA Ratio in Mice. Current Protocols in Mouse Biology, 2017, 7, 47-54.	1.2	256
68	Mitochondria and Epigenetics – Crosstalk in Homeostasis and Stress. Trends in Cell Biology, 2017, 27, 453-463.	3.6	256
69	Peroxisome Proliferator-Activated Receptor-Î ³ Calls for Activation in Moderation: Lessons from Genetics and Pharmacology. Endocrine Reviews, 2004, 25, 899-918.	8.9	251
70	Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. Journal of Cell Biology, 2017, 216, 149-165.	2.3	250
71	The Retinoblastoma-Histone Deacetylase 3 Complex Inhibits PPARÎ ³ and Adipocyte Differentiation. Developmental Cell, 2002, 3, 903-910.	3.1	249
72	SRT1720 improves survival and healthspan of obese mice. Scientific Reports, 2011, 1, 70.	1.6	249

#	Article	IF	CITATIONS
73	Adipocyte NCoR Knockout Decreases PPARÎ ³ Phosphorylation and Enhances PPARÎ ³ Activity and Insulin Sensitivity. Cell, 2011, 147, 815-826.	13.5	246
74	Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes and Development, 2013, 27, 819-835.	2.7	243
75	Protein acetylation in metabolism — metabolites and cofactors. Nature Reviews Endocrinology, 2016, 12, 43-60.	4.3	236
76	Histone Methyl Transferases and Demethylases; CanÂThey Link Metabolism and Transcription?. Cell Metabolism, 2010, 12, 321-327.	7.2	231
77	PARP-2 Regulates SIRT1 Expression and Whole-Body Energy Expenditure. Cell Metabolism, 2011, 13, 450-460.	7.2	231
78	Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiological Genomics, 2008, 34, 243-255.	1.0	229
79	NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and Oxidative Function. Cell, 2011, 147, 827-839.	13.5	228
80	E2F transcription factor-1 regulates oxidative metabolism. Nature Cell Biology, 2011, 13, 1146-1152.	4.6	222
81	Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population. Cell, 2014, 158, 1415-1430.	13.5	222
82	Lowering Bile Acid Pool Size with a Synthetic Farnesoid X Receptor (FXR) Agonist Induces Obesity and Diabetes through Reduced Energy Expenditure. Journal of Biological Chemistry, 2011, 286, 26913-26920.	1.6	221
83	Discovery of 6α-Ethyl-23(<i>S</i>)-methylcholic Acid (<i>S</i> -EMCA, INT-777) as a Potent and Selective Agonist for the TGR5 Receptor, a Novel Target for Diabesity. Journal of Medicinal Chemistry, 2009, 52, 7958-7961.	2.9	220
84	A SIRT7-Dependent Acetylation Switch of GABPβ1 Controls Mitochondrial Function. Cell Metabolism, 2014, 20, 856-869.	7.2	214
85	Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle. Cell Metabolism, 2017, 25, 301-311.	7.2	213
86	Systems Genetics of Metabolism: The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits. Cell, 2012, 150, 1287-1299.	13.5	212
87	Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BNâ€PAGE). Current Protocols in Mouse Biology, 2016, 6, 1-14.	1.2	212
88	Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metabolism, 2014, 19, 1034-1041.	7.2	211
89	Calorie Restriction: Is AMPK a Key Sensor and Effector?. Physiology, 2011, 26, 214-224.	1.6	209
90	NAD ⁺ repletion improves muscle function in muscular dystrophy and counters global PARylation. Science Translational Medicine, 2016, 8, 361ra139.	5.8	208

#	Article	IF	CITATIONS
91	Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nature Communications, 2016, 7, 13125.	5.8	206
92	Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a â€~mitohormesis' mechanism involving reactive oxygen species and PGC-1. European Heart Journal, 2012, 33, 1397-1407.	1.0	203
93	The role of mitochondria in stem cell fate and aging. Development (Cambridge), 2018, 145, .	1.2	199
94	Murine Gut Microbiota Is Defined by Host Genetics and Modulates Variation of Metabolic Traits. PLoS ONE, 2012, 7, e39191.	1.1	198
95	Repairing Mitochondrial Dysfunction in Disease. Annual Review of Pharmacology and Toxicology, 2018, 58, 353-389.	4.2	198
96	The European dimension for the mouse genome mutagenesis program. Nature Genetics, 2004, 36, 925-927.	9.4	195
97	Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circulation Research, 2020, 126, 439-452.	2.0	195
98	Metabolic Networks of Longevity. Cell, 2010, 142, 9-14.	13.5	190
99	Joint mouse–human phenome-wide association to test gene function and disease risk. Nature Communications, 2016, 7, 10464.	5.8	190
100	Transcriptional targets of sirtuins in the coordination of mammalian physiology. Current Opinion in Cell Biology, 2008, 20, 303-309.	2.6	187
101	PPARÎ ³ in human and mouse physiology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 999-1013.	1.2	184
102	Liver receptor homolog 1 is essential for ovulation. Genes and Development, 2008, 22, 1871-1876.	2.7	182
103	The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-11±. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17187-17192.	3.3	180
104	Structureâ^Activity Relationship Study of Betulinic Acid, A Novel and Selective TGR5 Agonist, and Its Synthetic Derivatives: Potential Impact in Diabetes. Journal of Medicinal Chemistry, 2010, 53, 178-190.	2.9	180
105	Modulating <scp>NAD</scp> ⁺ metabolism, from bench toÂbedside. EMBO Journal, 2017, 36, 2670-2683.	3.5	174
106	Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARÂ hypomorphic mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14457-14462.	3.3	171
107	Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. Journal of Clinical Investigation, 2013, 123, 2564-2575.	3.9	170
108	Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends in Molecular Medicine, 2021, 27, 687-699.	3.5	166

#	Article	IF	CITATIONS
109	NAD ⁺ metabolism: A therapeutic target for age-related metabolic disease. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 397-408.	2.3	163
110	mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9902-9907.	3.3	162
111	The Role of Sirtuins in the Control of Metabolic Homeostasis. Annals of the New York Academy of Sciences, 2009, 1173, E10-9.	1.8	160
112	PPARδPromotes Running Endurance by Preserving Glucose. Cell Metabolism, 2017, 25, 1186-1193.e4.	7.2	154
113	Mitocellular communication: Shaping health and disease. Science, 2019, 366, 827-832.	6.0	154
114	Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene, 2010, 29, 4617-4624.	2.6	151
115	Key Electrophysiological, Molecular, and Metabolic Signatures of Sleep and Wakefulness Revealed in Primary Cortical Cultures. Journal of Neuroscience, 2012, 32, 12506-12517.	1.7	151
116	NCoR Repression of LXRs Restricts Macrophage Biosynthesis of Insulin-Sensitizing Omega 3 Fatty Acids. Cell, 2013, 155, 200-214.	13.5	149
117	Systematic Gene Expression Mapping Clusters Nuclear Receptors According to Their Function in the Brain. Cell, 2007, 131, 405-418.	13.5	145
118	Superâ€Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope. Small, 2014, 10, 1712-1718.	5.2	144
119	TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Scientific Reports, 2012, 2, 430.	1.6	143
120	The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell, 2019, 24, 405-418.e7.	5.2	143
121	Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nature Communications, 2019, 10, 1567.	5.8	143
122	Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E952-61.	3.3	142
123	The journey of resveratrol from yeast to human. Aging, 2012, 4, 146-158.	1.4	141
124	CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Reports, 2011, 12, 1069-1076.	2.0	140
125	Bile Acids and the Membrane Bile Acid Receptor TGR5—Connecting Nutrition and Metabolism. Thyroid, 2008, 18, 167-174.	2.4	139
126	LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13098-13103.	3.3	136

#	Article	IF	CITATIONS
127	Compromised Intestinal Lipid Absorption in Mice with a Liver-Specific Deficiency of Liver Receptor Homolog 1. Molecular and Cellular Biology, 2007, 27, 8330-8339.	1.1	135
128	The Bile Acid Membrane Receptor TGR5: A Valuable Metabolic Target. Digestive Diseases, 2011, 29, 37-44.	0.8	135
129	Conjugated Bile Acids Associate with Altered Rates of Glucose and Lipid Oxidation after Roux-en-Y Gastric Bypass. Obesity Surgery, 2012, 22, 1473-1480.	1.1	135
130	The C-type Lectin Receptors Dectin-1, MR, and SIGNR3 Contribute Both Positively and Negatively to the Macrophage Response to Leishmania infantum. Immunity, 2013, 38, 1038-1049.	6.6	134
131	A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nature Protocols, 2016, 11, 1798-1816.	5.5	133
132	The Pollutant Diethylhexyl Phthalate Regulates Hepatic Energy Metabolism via Species-Specific PPARα-Dependent Mechanisms. Environmental Health Perspectives, 2010, 118, 234-241.	2.8	129
133	Protein deacetylation by SIRT1: An emerging key post-translational modification in metabolic regulation. Pharmacological Research, 2010, 62, 35-41.	3.1	126
134	Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Scientific Reports, 2012, 2, 425.	1.6	126
135	Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Human Molecular Genetics, 2013, 22, 1783-1790.	1.4	122
136	Vitamin D and energy homeostasis—of mice and men. Nature Reviews Endocrinology, 2014, 10, 79-87.	4.3	121
137	The Sirt1 activator SRT3025 provides atheroprotection in Apoeâ^'/â^' mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. European Heart Journal, 2015, 36, 51-59.	1.0	117
138	PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. Journal of Hepatology, 2017, 66, 589-600.	1.8	116
139	Metabolic Characterization of a Sirt5 deficient mouse model. Scientific Reports, 2013, 3, 2806.	1.6	115
140	Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. Journal of Hepatology, 2017, 66, 132-141.	1.8	115
141	A platform for experimental precision medicine: The extended BXD mouse family. Cell Systems, 2021, 12, 235-247.e9.	2.9	115
142	Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nature Communications, 2018, 9, 1551.	5.8	114
143	Tetracycline Antibiotics Impair Mitochondrial Function and Its Experimental Use Confounds Research. Cancer Research, 2015, 75, 4446-4449.	0.4	112
144	SIRT2 Deficiency Modulates Macrophage Polarization and Susceptibility to Experimental Colitis. PLoS ONE, 2014, 9, e103573.	1.1	111

#	Article	IF	CITATIONS
145	The mitochondrial unfolded protein response—synchronizing genomes. Current Opinion in Cell Biology, 2015, 33, 74-81.	2.6	111
146	LRP1 Functions as an Atheroprotective Integrator of TGFÎ ² and PDGF Signals in the Vascular Wall: Implications for Marfan Syndrome. PLoS ONE, 2007, 2, e448.	1.1	110
147	Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays, 2015, 37, 1045-1053.	1.2	108
148	Mouse functional genomics requires standardization of mouse handling and housing conditions. Mammalian Genome, 2004, 15, 768-783.	1.0	106
149	LRP1 Controls Intracellular Cholesterol Storage and Fatty Acid Synthesis through Modulation of Wnt Signaling. Journal of Biological Chemistry, 2009, 284, 381-388.	1.6	106
150	Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17868-17873.	3.3	101
151	The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. Molecular Cell, 2019, 73, 775-787.e10.	4.5	100
152	Regulation of Steatohepatitis and PPARÎ ³ Signaling by Distinct AP-1 Dimers. Cell Metabolism, 2014, 19, 84-95.	7.2	99
153	Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes and Development, 2015, 29, 934-947.	2.7	99
154	Evidence for a Direct Effect of the NAD+ Precursor Acipimox on Muscle Mitochondrial Function in Humans. Diabetes, 2015, 64, 1193-1201.	0.3	99
155	Cytosolic Proteostasis Networks of the Mitochondrial Stress Response. Trends in Biochemical Sciences, 2017, 42, 712-725.	3.7	99
156	Peroxisome Proliferator-activated Receptor (PPAR)-2 Controls Adipocyte Differentiation and Adipose Tissue Function through the Regulation of the Activity of the Retinoid X Receptor/PPARÎ ³ Heterodimer. Journal of Biological Chemistry, 2007, 282, 37738-37746.	1.6	97
157	Nongenomic Actions of Bile Acids. Synthesis and Preliminary Characterization of 23- and 6,23-Alkyl-Substituted Bile Acid Derivatives as Selective Modulators for the G-Protein Coupled Receptor TGR5. Journal of Medicinal Chemistry, 2007, 50, 4265-4268.	2.9	97
158	Genetic background determines metabolic phenotypes in the mouse. Mammalian Genome, 2008, 19, 318-331.	1.0	97
159	GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. ELife, 2018, 7, .	2.8	96
160	Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. American Journal of Clinical Nutrition, 2020, 112, 413-426.	2.2	96
161	Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10703-10708.	3.3	95
162	LRH-1–dependent glucose sensing determines intermediary metabolism in liver. Journal of Clinical Investigation, 2012, 122, 2817-2826.	3.9	94

#	Article	IF	CITATIONS
163	SIRT1 mRNA Expression May Be Associated With Energy Expenditure and Insulin Sensitivity. Diabetes, 2010, 59, 829-835.	0.3	93
164	Exploring the therapeutic space around NAD+. Journal of Cell Biology, 2012, 199, 205-209.	2.3	93
165	Bile Acid Binding Resin Improves Metabolic Control through the Induction of Energy Expenditure. PLoS ONE, 2012, 7, e38286.	1.1	93
166	Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Science Translational Medicine, 2021, 13, .	5.8	93
167	Long noncoding RNA <i>SNHG12</i> integrates a DNA-PK–mediated DNA damage response and vascular senescence. Science Translational Medicine, 2020, 12, .	5.8	91
168	Impaired pancreatic growth, β cell mass, and β cell function in E2F1 –/– mice. Journal of Clinical Investigation, 2004, 113, 1288-1295.	3.9	90
169	Transcriptional Coregulators: Fine-Tuning Metabolism. Cell Metabolism, 2014, 20, 26-40.	7.2	89
170	Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. Journal of Clinical Investigation, 2020, 130, 5858-5874.	3.9	87
171	PPARÎ ³ Controls Dectin-1 Expression Required for Host Antifungal Defense against Candida albicans. PLoS Pathogens, 2010, 6, e1000714.	2.1	84
172	IL-13 induces expression of CD36 in human monocytes through PPARÎ ³ activation. European Journal of Immunology, 2007, 37, 1642-1652.	1.6	83
173	Type 5 Adenylyl Cyclase Increases Oxidative Stress by Transcriptional Regulation of Manganese Superoxide Dismutase via the SIRT1/FoxO3a Pathway. Circulation, 2013, 127, 1692-1701.	1.6	82
174	The small heterodimer partner is a gonadal gatekeeper of sexual maturation in male mice. Genes and Development, 2007, 21, 303-315.	2.7	81
175	Evaluation of Glucose Homeostasis. Current Protocols in Molecular Biology, 2007, 77, Unit 29B.3.	2.9	81
176	NAD+ as a Signaling Molecule Modulating Metabolism. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 291-298.	2.0	81
177	The Intestinal Nuclear Receptor Signature With Epithelial Localization Patterns and Expression Modulation in Tumors. Gastroenterology, 2010, 138, 636-648.e12.	0.6	80
178	PparÎ ³ 2 Is a Key Driver of Longevity in the Mouse. PLoS Genetics, 2009, 5, e1000752.	1.5	78
179	Emerging actions of the nuclear receptor LRH-1 in the gut. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 947-955.	1.8	77
180	Mitochondrial function is impaired in the skeletal muscle of pre-frail elderly. Scientific Reports, 2018, 8, 8548.	1.6	76

#	Article	IF	CITATIONS
181	The Convergence of Systems and Reductionist Approaches in Complex Trait Analysis. Cell, 2015, 162, 23-32.	13.5	75
182	The Corepressor NCoR1 Antagonizes PGC-1 <i>α</i> and Estrogen-Related Receptor <i>α</i> in the Regulation of Skeletal Muscle Function and Oxidative Metabolism. Molecular and Cellular Biology, 2012, 32, 4913-4924.	1.1	74
183	PPARÎ ³ Ligands Switched High Fat Diet-Induced Macrophage M2b Polarization toward M2a Thereby Improving Intestinal Candida Elimination. PLoS ONE, 2010, 5, e12828.	1.1	73
184	The Pro12Ala PPARÎ ³ 2 Variant Determines Metabolism at the Gene-Environment Interface. Cell Metabolism, 2009, 9, 88-98.	7.2	68
185	Miniaturized implantable sensors for in vivo localized temperature measurements in mice during cold exposure. Biomedical Microdevices, 2016, 18, 1.	1.4	66
186	Pleiotropic effects of mitochondria in aging. Nature Aging, 2022, 2, 199-213.	5.3	66
187	Estrogenâ€related receptorâ€Î± (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury. FASEB Journal, 2014, 28, 1082-1097.	0.2	64
188	Roux-en-y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis. Gut, 2015, 64, 673-683.	6.1	64
189	Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. Nature Communications, 2017, 8, 15842.	5.8	64
190	Increased Hepatic PDGF-AA Signaling Mediates Liver Insulin Resistance in Obesity-Associated Type 2 Diabetes. Diabetes, 2018, 67, 1310-1321.	0.3	64
191	Growth differentiation factor 15 protects against the agingâ€mediated systemic inflammatory response in humans and mice. Aging Cell, 2020, 19, e13195.	3.0	64
192	Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nature Metabolism, 2020, 2, 688-702.	5.1	64
193	Nicotinamide Pathway-Dependent Sirt1 Activation Restores Calcium Homeostasis to Achieve Neuroprotection in Spinocerebellar Ataxia Type 7. Neuron, 2020, 105, 630-644.e9.	3.8	63
194	Absence of the steroid receptor coactivator-3 induces B-cell lymphoma. EMBO Journal, 2006, 25, 2453-2464.	3.5	62
195	In Vivo Imaging of Farnesoid X Receptor Activity Reveals the lleum as the Primary Bile Acid Signaling Tissue. Molecular Endocrinology, 2007, 21, 1312-1323.	3.7	62
196	Identification of the UBP1 Locus as a Critical Blood Pressure Determinant Using a Combination of Mouse and Human Genetics. PLoS Genetics, 2009, 5, e1000591.	1.5	61
197	The mitochondrial unfolded protein response in mammalian physiology. Mammalian Genome, 2014, 25, 424-433.	1.0	61
198	A homozygous missense mutation in ERAL1, encoding a mitochondrial rRNA chaperone, causes Perrault syndrome. Human Molecular Genetics, 2017, 26, 2541-2550.	1.4	61

#	Article	IF	CITATIONS
199	Diet1 Functions in the FGF15/19 Enterohepatic Signaling Axis to Modulate Bile Acid and Lipid Levels. Cell Metabolism, 2013, 17, 916-928.	7.2	60
200	Bile Acids Increase Levels of MicroRNAs 221 and 222, Leading to Degradation of CDX2 During Esophageal Carcinogenesis. Gastroenterology, 2013, 145, 1300-1311.	0.6	59
201	An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long-term live imaging. Scientific Reports, 2015, 5, 10192.	1.6	57
202	LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes and Development, 2016, 30, 1255-1260.	2.7	56
203	Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Reports Medicine, 2022, 3, 100633.	3.3	55
204	Deletion of Sirt3 does not affect atherosclerosis but accelerates weight gain and impairs rapid metabolic adaptation in LDL receptor knockout mice: implications for cardiovascular risk factor development. Basic Research in Cardiology, 2014, 109, 399.	2.5	54
205	Systems Analyses Reveal Physiological Roles and Genetic Regulators of Liver Lipid Species. Cell Systems, 2018, 6, 722-733.e6.	2.9	54
206	Genetic Regulation of Plasma Lipid Species and Their Association with Metabolic Phenotypes. Cell Systems, 2018, 6, 709-721.e6.	2.9	52
207	The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice. Journal of Clinical Investigation, 2009, 119, 3752-3764.	3.9	51
208	An Evolutionarily Conserved Role for the Aryl Hydrocarbon Receptor in the Regulation of Movement. PLoS Genetics, 2014, 10, e1004673.	1.5	50
209	Parkin functionally interacts with PGC-1α to preserve mitochondria and protect dopaminergic neuron <i>s</i> . Human Molecular Genetics, 2017, 26, ddw418.	1.4	50
210	Quantifying and Localizing the Mitochondrial Proteome Across Five Tissues in A Mouse Population. Molecular and Cellular Proteomics, 2018, 17, 1766-1777.	2.5	50
211	Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology, 2021, 161, 1584-1600.	0.6	50
212	The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nature Aging, 2021, 1, 165-178.	5.3	49
213	Mouse phenogenomics: The fast track to "systems metabolism― Cell Metabolism, 2005, 2, 349-360.	7.2	48
214	Sirtuin 2 Deficiency Increases Bacterial Phagocytosis by Macrophages and Protects from Chronic Staphylococcal Infection. Frontiers in Immunology, 2017, 8, 1037.	2.2	48
215	Evaluation of the NAD+ biosynthetic pathway in ALS patients and effect of modulating NAD+ levels in hSOD1-linked ALS mouse models. Experimental Neurology, 2020, 327, 113219.	2.0	48
216	Mitochondrial sirtuins and metabolic homeostasis. Best Practice and Research in Clinical Endocrinology and Metabolism, 2012, 26, 759-770.	2.2	47

#	Article	IF	CITATIONS
217	Intestinal steroidogenesis controls PPARÎ ³ expression in the colon and is impaired during ulcerative colitis. Gut, 2015, 64, 901-910.	6.1	47
218	Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress. Molecular Cell, 2017, 68, 540-551.e5.	4.5	47
219	Fine-Tuning of PGC1α Expression Regulates Cardiac Function and Longevity. Circulation Research, 2019, 125, 707-719.	2.0	47
220	TGR5 Regulates Macrophage Inflammation in Nonalcoholic Steatohepatitis by Modulating NLRP3 Inflammasome Activation. Frontiers in Immunology, 2020, 11, 609060.	2.2	47
221	An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function. Cell Systems, 2018, 6, 90-102.e4.	2.9	47
222	FGF21 Takes a Fat Bite. Science, 2012, 336, 675-676.	6.0	46
223	Phosphorylation of the nuclear receptor corepressor 1 by protein kinase B switches its corepressor targets in the liver in mice. Hepatology, 2015, 62, 1606-1618.	3.6	46
224	ARTD1-induced poly-ADP-ribose formation enhances PPARÎ ³ ligand binding and co-factor exchange. Nucleic Acids Research, 2015, 43, 129-142.	6.5	46
225	Interference between PARPs and SIRT1: a novel approach to healthy ageing?. Aging, 2011, 3, 543-547.	1.4	46
226	Dependence of Hippocampal Function on ERRÎ ³ -Regulated Mitochondrial Metabolism. Cell Metabolism, 2015, 21, 628-636.	7.2	45
227	Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer. Oncogene, 2021, 40, 1644-1658.	2.6	45
228	Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response. IScience, 2021, 24, 102181.	1.9	45
229	Longevity hits a roadblock. Nature, 2011, 477, 410-411.	13.7	44
230	Loss of Sirt3 accelerates arterial thrombosis by increasing formation of neutrophil extracellular traps and plasma tissue factor activity. Cardiovascular Research, 2018, 114, 1178-1188.	1.8	44
231	The virtuous cycle of human genetics and mouse models in drug discovery. Nature Reviews Drug Discovery, 2019, 18, 255-272.	21.5	44
232	A method to identify and validate mitochondrial modulators using mammalian cells and the worm C. elegans. Scientific Reports, 2014, 4, 5285.	1.6	42
233	Automated longitudinal monitoring of in vivo protein aggregation in neurodegenerative disease C. elegans models. Molecular Neurodegeneration, 2016, 11, 17.	4.4	42
234	NAD+ boosting reduces age-associated amyloidosis and restores mitochondrial homeostasis in muscle. Cell Reports, 2021, 34, 108660.	2.9	42

#	Article	IF	CITATIONS
235	Impaired myogenesis in estrogenâ€related receptor γ (ERRγ)â€deficient skeletal myocytes due to oxidative stress. FASEB Journal, 2013, 27, 135-150.	0.2	41
236	Loss of Sirt1 Function Improves Intestinal Anti-Bacterial Defense and Protects from Colitis-Induced Colorectal Cancer. PLoS ONE, 2014, 9, e102495.	1.1	41
237	Plasma membraneâ€bound G protein–coupled bile acid receptor attenuates liver ischemia/reperfusion injury via the inhibition of tollâ€like receptor 4 signaling in mice. Liver Transplantation, 2017, 23, 63-74.	1.3	41
238	Mouse Systems Genetics as a Prelude to Precision Medicine. Trends in Genetics, 2020, 36, 259-272.	2.9	41
239	Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nature Communications, 2017, 8, 480.	5.8	40
240	Niacin: an old lipid drug in a new NAD+ dress. Journal of Lipid Research, 2019, 60, 741-746.	2.0	40
241	Peroxisome Proliferator-Activated Receptor-α Activation Inhibits Langerhans Cell Function. Journal of Immunology, 2007, 178, 4362-4372.	0.4	39
242	PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis. FASEB Journal, 2015, 29, 1185-1197.	0.2	38
243	Direct supplementation with Urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. European Journal of Clinical Nutrition, 2022, 76, 297-308.	1.3	38
244	Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovascular Research, 2018, 114, 1324-1334.	1.8	37
245	A biosensor for measuring NAD+ levels at the point of care. Nature Metabolism, 2019, 1, 1219-1225.	5.1	37
246	Probing the Binding Site of Bile Acids in TGR5. ACS Medicinal Chemistry Letters, 2013, 4, 1158-1162.	1.3	36
247	Identifying gene function and module connections by the integration of multispecies expression compendia. Genome Research, 2019, 29, 2034-2045.	2.4	36
248	Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. Aging Cell, 2018, 17, e12751.	3.0	35
249	Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 60-68.	0.4	35
250	α-Amino-β-carboxymuconate-ε-semialdehyde Decarboxylase (ACMSD) Inhibitors as Novel Modulators of De Novo Nicotinamide Adenine Dinucleotide (NAD ⁺) Biosynthesis. Journal of Medicinal Chemistry, 2018, 61, 745-759.	2.9	34
251	TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington's disease models. EMBO Journal, 2020, 39, e104671.	3.5	34
252	IL-13 Attenuates Gastrointestinal Candidiasis in Normal and Immunodeficient RAG-2â^'/â^' Mice via Peroxisome Proliferator-Activated Receptor-γ Activation. Journal of Immunology, 2008, 180, 4939-4947.	0.4	33

#	Article	IF	CITATIONS
253	Genetically altering organismal metabolism by leptin-deficiency benefits a mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 4995-5008.	1.4	32
254	Sirtuin 3 deficiency does not alter host defenses against bacterial and fungal infections. Scientific Reports, 2017, 7, 3853.	1.6	31
255	Autophagy Defect Is Associated with Low Glucose-Induced Apoptosis in 661W Photoreceptor Cells. PLoS ONE, 2013, 8, e74162.	1.1	31
256	Suppression of allergen-induced airway inflammation and immune response by the peroxisome proliferator-activated receptor-alpha agonist fenofibrate. European Journal of Pharmacology, 2008, 581, 177-184.	1.7	30
257	The chromatin remodeling factor ISW-1 integrates organismal responses against nuclear and mitochondrial stress. Nature Communications, 2017, 8, 1818.	5.8	30
258	ERRÎ ³ Preserves Brown Fat Innate Thermogenic Activity. Cell Reports, 2018, 22, 2849-2859.	2.9	30
259	Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nature Communications, 2020, 11, 2695.	5.8	29
260	Gene Expression Mapping of Histone Deacetylases and Co-factors and Correlation with Survival Time and 1H-HRMAS Metabolomic Profile in Human Gliomas. Scientific Reports, 2015, 5, 9087.	1.6	28
261	Mild endothelial dysfunction in Sirt3 knockout mice fed a high-cholesterol diet: protective role of a novel C/EBP-Î2-dependent feedback regulation of SOD2. Basic Research in Cardiology, 2016, 111, 33.	2.5	28
262	Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity. Aging Cell, 2012, 11, 1110-1120.	3.0	27
263	An acetylation rheostat for the control of muscle energy homeostasis. Journal of Molecular Endocrinology, 2013, 51, T101-T113.	1.1	27
264	Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2718-2732.	1.8	27
265	Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain, 2020, 143, 1686-1696.	3.7	27
266	Gene-by-environment modulation of lifespan and weight gain in the murine BXD family. Nature Metabolism, 2021, 3, 1217-1227.	5.1	27
267	Microfluidics-enabled phenotyping of a whole population of C. elegans worms over their embryonic and post-embryonic development at single-organism resolution. Microsystems and Nanoengineering, 2018, 4, 6.	3.4	26
268	Sirt6 deletion in bone marrow-derived cells increases atherosclerosis – Central role of macrophage scavenger receptor 1. Journal of Molecular and Cellular Cardiology, 2020, 139, 24-32.	0.9	26
269	Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis. Gastroenterology, 2017, 153, 1568-1580.e10.	0.6	25
270	Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain. FASEB Journal, 2017, 31, 4515-4532.	0.2	25

#	Article	IF	CITATIONS
271	Nuclear receptor corepressor 1 represses cardiac hypertrophy. EMBO Molecular Medicine, 2019, 11, e9127.	3.3	25
272	Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms. PLoS ONE, 2018, 13, e0193989.	1.1	25
273	Redefining the TGR5 Triterpenoid Binding Pocket at the Câ€3 Position. ChemMedChem, 2010, 5, 1983-1988.	1.6	24
274	New life for antidiabetic drugs. Nature, 2010, 466, 443-444.	13.7	24
275	PPARβ/δactivation of CD300a controls intestinal immunity. Scientific Reports, 2014, 4, 5412.	1.6	24
276	TGR5/Cathepsin E signaling regulates macrophage innate immune activation in liver ischemia and reperfusion injury. American Journal of Transplantation, 2021, 21, 1453-1464.	2.6	24
277	Molecular Field Analysis and 3D-Quantitative Structureâ^'Activity Relationship Study (MFA 3D-QSAR) Unveil Novel Features of Bile Acid Recognition at TGR5. Journal of Chemical Information and Modeling, 2008, 48, 1792-1801.	2.5	23
278	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	13.7	23
279	The Gene-Regulatory Footprint of Aging Highlights Conserved Central Regulators. Cell Reports, 2020, 32, 108203.	2.9	23
280	Confounding factors from inducible systems for spatiotemporal gene expression regulation. Journal of Cell Biology, 2020, 219, .	2.3	23
281	NR5A2 Regulates Lhb and Fshb Transcription in Gonadotrope-Like Cells In Vitro, but Is Dispensable for Gonadotropin Synthesis and Fertility In Vivo. PLoS ONE, 2013, 8, e59058.	1.1	22
282	KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response. Cell Reports, 2016, 15, 1051-1061.	2.9	22
283	PHD3 Loss Promotes Exercise Capacity and Fat Oxidation in Skeletal Muscle. Cell Metabolism, 2020, 32, 215-228.e7.	7.2	22
284	Impact of the apolipoprotein E polymorphism, age and sex on neurogenesis in mice: Pathophysiological relevance for Alzheimer's disease?. Brain Research, 2014, 1542, 32-40.	1.1	21
285	An unbiased silencing screen in muscle cells identifies miR-320a, miR-150, miR-196b, and miR-34c as regulators of skeletal muscle mitochondrial metabolism. Molecular Metabolism, 2017, 6, 1429-1442.	3.0	21
286	Asperuloside Improves Obesity and Type 2 Diabetes through Modulation of Gut Microbiota and Metabolic Signaling. IScience, 2020, 23, 101522.	1.9	21
287	Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression. Science Advances, 2020, 6, .	4.7	21
288	Lack of ILâ€2 in PPARâ€Î±â€deficient mice triggers allergic contact dermatitis by affecting regulatory T cells. European Journal of Immunology, 2011, 41, 1980-1991.	1.6	20

#	Article	IF	CITATIONS
289	eNAMPT actions through nucleus accumbens NAD ⁺ /SIRT1 link increased adiposity with sociability deficits programmed by peripuberty stress. Science Advances, 2022, 8, eabj9109.	4.7	20
290	MicroRNAâ€382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells. Journal of Cellular Physiology, 2019, 234, 6601-6610.	2.0	19
291	The exercise-induced long noncoding RNA <i>CYTOR</i> promotes fast-twitch myogenesis in aging. Science Translational Medicine, 2021, 13, eabc7367.	5.8	19
292	Macrophage NCOR1 Deficiency Ameliorates Myocardial Infarction and Neointimal Hyperplasia in Mice. Journal of the American Heart Association, 2020, 9, e015862.	1.6	18
293	Inhibition of sphingolipid de novo synthesis counteracts muscular dystrophy. Science Advances, 2022, 8, eabh4423.	4.7	18
294	The mouse metallomic landscape of aging and metabolism. Nature Communications, 2022, 13, 607.	5.8	18
295	Targeting the TGR5-GLP-1 pathway to combat typeÂ2 diabetes and non-alcoholic fatty liver disease. Gastroenterologie Clinique Et Biologique, 2010, 34, 270-273.	0.9	17
296	Intestinal NCoR1, a regulator of epithelial cell maturation, controls neonatal hyperbilirubinemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1432-E1440.	3.3	17
297	NCoR1 restrains thymic negative selection by repressing Bim expression to spare thymocytes undergoing positive selection. Nature Communications, 2017, 8, 959.	5.8	17
298	Nicotinamide Riboside Enhances In Vitro Beta-adrenergic Brown Adipose Tissue Activity in Humans. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1437-1447.	1.8	17
299	Acute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity. Nature Communications, 2021, 12, 7219.	5.8	17
300	DisSIRTing on LXR and Cholesterol Metabolism. Cell Metabolism, 2007, 6, 343-345.	7.2	16
301	Automated high-content phenotyping from the first larval stage till the onset of adulthood of the nematode Caenorhabditis elegans. Lab on A Chip, 2019, 19, 120-135.	3.1	16
302	The Movement Tracker: A Flexible System for Automated Movement Analysis in Invertebrate Model Organisms. Current Protocols in Neuroscience, 2016, 77, 8.37.1-8.37.21.	2.6	15
303	Oxidative stress and mitochondrial dynamics malfunction are linked in <scp>P</scp> elizaeusâ€ <scp>M</scp> erzbacher disease. Brain Pathology, 2018, 28, 611-630.	2.1	15
304	Automated Platform for Long-Term Culture and High-Content Phenotyping of Single C. elegans Worms. Scientific Reports, 2019, 9, 14340.	1.6	15
305	The corepressor NCOR1 regulates the survival of single-positive thymocytes. Scientific Reports, 2017, 7, 15928.	1.6	14
306	Mild inborn errors of metabolism in commonly used inbred mouse strains. Molecular Genetics and Metabolism, 2019, 126, 388-396.	0.5	14

#	Article	IF	CITATIONS
307	The nuclear receptor corepressor NCoR1 regulates hematopoiesis and leukemogenesis in vivo. Blood Advances, 2019, 3, 644-657.	2.5	14
308	Genetic background and sex control the outcome of high-fat diet feeding in mice. IScience, 2022, 25, 104468.	1.9	14
309	Dietary Manipulation of Mouse Metabolism. Current Protocols in Molecular Biology, 2008, 84, Unit 29B.5.	2.9	13
310	Type 5 adenylyl cyclase disruption leads to enhanced exercise performance. Aging Cell, 2015, 14, 1075-1084.	3.0	13
311	Sirtuin 7 Deficiency Reduces Inflammation and Tubular Damage Induced by an Episode of Acute Kidney Injury. International Journal of Molecular Sciences, 2022, 23, 2573.	1.8	12
312	Clking on PGC-1Î \pm to Inhibit Gluconeogenesis. Cell Metabolism, 2010, 11, 6-7.	7.2	11
313	Cross-species functional modules link proteostasis to human normal aging. PLoS Computational Biology, 2019, 15, e1007162.	1.5	11
314	Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel. Nature Metabolism, 2019, 1, 1226-1242.	5.1	11
315	NCoR1 Protects Mice From Dextran Sodium Sulfate–Induced Colitis by Guarding Colonic Crypt Cells From Luminal Insult. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 133-147.	2.3	11
316	SIRT7 modulates the stability and activity of the renal K l cotransporter KCC4 through deacetylation. EMBO Reports, 2021, 22, e50766.	2.0	11
317	Transcriptional regulation of adipocyte formation by the liver receptor homologue 1 (Lrh1)—Small hetero-dimerization partner (Shp) network. Molecular Metabolism, 2013, 2, 314-323.	3.0	10
318	<i>In vivo</i> imaging reveals selective <scp>PPAR</scp> activity in the skin of peroxisome proliferatorâ€activated receptor responsive elementâ€uciferase reporter mice. Experimental Dermatology, 2013, 22, 137-140.	1.4	10
319	Pancreatic Sirtuin 3 Deficiency Promotes Hepatic Steatosis by Enhancing 5-Hydroxytryptamine Synthesis in Mice With Diet-Induced Obesity. Diabetes, 2021, 70, 119-131.	0.3	10
320	The Slc25a47 locus is a novel determinant of hepatic mitochondrial function implicated in liver fibrosis. Journal of Hepatology, 2022, 77, 1071-1082.	1.8	10
321	Opposing action of NCoR1 and PGC-1Î \pm in mitochondrial redox homeostasis. Free Radical Biology and Medicine, 2019, 143, 203-208.	1.3	9
322	Phalloidin Staining of Actin Filaments for Visualization of Muscle Fibers in Caenorhabditis elegans. Bio-protocol, 2021, 11, e4183.	0.2	9
323	Multi-omics analysis identifies essential regulators of mitochondrial stress response in two wild-type C.Âelegans strains. IScience, 2022, 25, 103734.	1.9	9
324	Multimodal imaging and high-throughput image-processing for drug screening on living organisms on-chip. Journal of Biomedical Optics, 2018, 24, 1.	1.4	8

#	Article	IF	CITATIONS
325	GCN5 maintains muscle integrity by acetylating YY1 to promote dystrophin expression. Journal of Cell Biology, 2022, 221, .	2.3	8
326	pRb, a Switch between Bone and Brown Fat. Developmental Cell, 2010, 19, 360-362.	3.1	7
327	Fluorescence Imaging: Superâ€Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope (Small 9/2014). Small, 2014, 10, 1876-1876.	5.2	7
328	<i>N</i> â€acetylaspartate availability is essential for juvenile survival on fatâ€free diet and determines metabolic health. FASEB Journal, 2019, 33, 13808-13824.	0.2	6
329	Diet modulates cecum bacterial diversity and physiological phenotypes across the BXD mouse genetic reference population. PLoS ONE, 2019, 14, e0224100.	1.1	6
330	Glucose Restriction: Longevity SIRTainly, but without Building Muscle?. Developmental Cell, 2008, 14, 642-644.	3.1	3
331	Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy. PLoS ONE, 2017, 12, e0181676.	1.1	3
332	Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-Induced Metabolic Disorders by Enhancing Fat Oxidation. Cell Metabolism, 2009, 9, 210.	7.2	2
333	The Detection of Early Epigenetic Inheritance of Mitochondrial Stress in C. Elegans with a Microfluidic Phenotyping Platform. Scientific Reports, 2019, 9, 19315.	1.6	2
334	TRANSLATING UROLITHIN A BENEFITS ON MUSCLE MITOCHONDRIA TO HUMANS. Innovation in Aging, 2018, 2, 92-93.	0.0	1
335	Automated High-Content Phenotyping of the Nematode C. Elegans at Single Animal Resolution with a Microfluidic Platform. , 2019, , .		1
336	A microfluidic array for high-content screening at whole-organism resolution. , 2018, , .		1
337	Editorial overview: Cell regulation: Cell biology, fueling a renaissance in metabolism. Current Opinion in Cell Biology, 2015, 33, vii-viii.	2.6	Ο
338	Sirtuins as Metabolic Modulators of Muscle Plasticity. , 2016, , 191-211.		0
339	NAD + Modulation. , 2018, , 27-44.		0
340	Enhanced Exercise Capacity in Adenylyl Cyclase Type 5 Knockout Mimics Chronic Exercise Training. FASEB Journal, 2012, 26, .	0.2	0