
Sean R Notley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A fractionation of the physiological burden of the personal protective equipment worn by firefighters. European Journal of Applied Physiology, 2012, 112, 2913-2921.	2.5	117
2	Physiological factors characterizing heat-vulnerable older adults: A narrative review. Environment International, 2020, 144, 105909.	10.0	116
3	Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. European Journal of Applied Physiology, 2017, 117, 1765-1785.	2.5	87
4	On the use of wearable physiological monitors to assess heat strain during occupational heat stress. Applied Physiology, Nutrition and Metabolism, 2018, 43, 869-881.	1.9	65
5	Variations in body morphology explain sex differences in thermoeffector function during compensable heat stress. Experimental Physiology, 2017, 102, 545-562.	2.0	62
6	Towards establishing evidence-based guidelines on maximum indoor temperatures during hot weather in temperate continental climates. Temperature, 2019, 6, 11-36.	3.0	46
7	The Impacts of Sun Exposure on Worker Physiology and Cognition: Multi-Country Evidence and Interventions. International Journal of Environmental Research and Public Health, 2021, 18, 7698.	2.6	44
8	Time following ingestion does not influence the validity of telemetry pill measurements of core temperature during exercise-heat stress: The journal <i>Temperature</i> toolbox. Temperature, 2021, 8, 12-20.	3.0	35
9	Menstrual cycle phase does not modulate whole body heat loss during exercise in hot, dry conditions. Journal of Applied Physiology, 2019, 126, 286-293.	2.5	34
10	Morphological dependency of cutaneous blood flow and sweating during compensable heat stress when heat-loss requirements are matched across participants. Journal of Applied Physiology, 2016, 121, 25-35.	2.5	32
11	Fitnessâ€related differences in the rate of wholeâ€body evaporative heat loss in exercising men are heatâ€load dependent. Experimental Physiology, 2018, 103, 101-110.	2.0	29
12	Exercise Heat Stress in Patients With and Without Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2019, 322, 1409.	7.4	29
13	The Relation between Age and Sex on Whole-Body Heat Loss during Exercise-Heat Stress. Medicine and Science in Sports and Exercise, 2020, 52, 2242-2249.	0.4	27
14	Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress. Medicine and Science in Sports and Exercise, 2017, 49, 2324-2332.	0.4	26
15	Aging and human heat dissipation during exercise-heat stress: an update and future directions. Current Opinion in Physiology, 2019, 10, 219-225.	1.8	26
16	Occupational heat stress management: Does one size fit all?. American Journal of Industrial Medicine, 2019, 62, 1017-1023.	2.1	26
17	Revisiting the influence of individual factors on heat exchange during exercise in dry heat using direct calorimetry. Experimental Physiology, 2019, 104, 1038-1050.	2.0	25
18	Employment Standards for Australian Urban Firefighters. Journal of Occupational and Environmental Medicine, 2015, 57, 1072-1082.	1.7	24

#	Article	IF	CITATIONS
19	Heat Loss Is Impaired in Older Men on the Day after Prolonged Work in the Heat. Medicine and Science in Sports and Exercise, 2018, 50, 1859-1867.	0.4	24
20	Heat Tolerance and Occupational Heat Exposure Limits in Older Men with and without Type 2 Diabetes or Hypertension. Medicine and Science in Sports and Exercise, 2021, 53, 2196-2206.	0.4	24
21	Exercise Thermoregulation in Prepubertal Children: A Brief Methodological Review. Medicine and Science in Sports and Exercise, 2020, 52, 2412-2422.	0.4	22
22	Balancing ballistic protection against physiological strain: evidence from laboratory and field trials. Applied Physiology, Nutrition and Metabolism, 2016, 41, 117-124.	1.9	21
23	Indicators to assess physiological heat strain – Part 3: Multi-country field evaluation and consensus recommendations. Temperature, 2022, 9, 274-291.	3.0	21
24	Fitnessâ€related differences in the rate of wholeâ€body total heat loss in exercising young healthy women are heatâ€load dependent. Experimental Physiology, 2018, 103, 312-317.	2.0	20
25	Cumulative effects of successive workdays in the heat on thermoregulatory function in the aging worker. Temperature, 2018, 5, 293-295.	3.0	20
26	The effects of thoracic load carriage on maximal ambulatory work tolerance and acceptable work durations. European Journal of Applied Physiology, 2016, 116, 635-646.	2.5	17
27	Evidence for ageâ€related differences in heat acclimatisation responsiveness. Experimental Physiology, 2020, 105, 1491-1499.	2.0	15
28	Australian firefighters perceptions of heat stress, fatigue and recovery practices during fire-fighting tasks in extreme environments. Applied Ergonomics, 2021, 95, 103449.	3.1	15
29	Administration of prostacyclin modulates cutaneous blood flow but not sweating in young and older males: roles for nitric oxide and calciumâ€activated potassium channels. Journal of Physiology, 2016, 594, 6419-6429.	2.9	14
30	Revisiting Ventilatory and Cardiovascular Predictions of Whole-Body Metabolic Rate. Journal of Occupational and Environmental Medicine, 2014, 56, 214-223.	1.7	13
31	Fluid Loss during Exercise-Heat Stress Reduces Cardiac Vagal Autonomic Modulation. Medicine and Science in Sports and Exercise, 2020, 52, 362-369.	0.4	13
32	Interactive effects of age and hydration state on human thermoregulatory function during exercise in hotâ€dry conditions. Acta Physiologica, 2019, 226, e13226.	3.8	12
33	Does a Prolonged Work Day in the Heat Impair Heat Loss on the Next Day in Young Men?. Medicine and Science in Sports and Exercise, 2018, 50, 318-326.	0.4	12
34	Effect of aerobic fitness on the relation between age and wholeâ€body heat exchange during exerciseâ€heat stress: a retrospective analysis. Experimental Physiology, 2020, 105, 1550-1560.	2.0	11
35	Climate Change and Heat Exposure: Impact on Health in Occupational and General Populations. , 2020, , 225-261.		11
36	Indicators to assess physiological heat strain – Part 2: Delphi exercise. Temperature, 0, , 1-11.	3.0	11

#	Article	IF	CITATIONS
37	The utility of heart rate and minute ventilation as predictors of whole-body metabolic rate during occupational simulations involving load carriage. Ergonomics, 2015, 58, 1671-1681.	2.1	10
38	Age-related reductions in heart rate variability do not worsen during exposure to humid compared to dry heat: A secondary analysis. Temperature, 2019, 6, 341-345.	3.0	10
39	Heat adaptation in humans: the significance of controlled and regulated variables for experimental design and interpretation. European Journal of Applied Physiology, 2020, 120, 2583-2595.	2.5	10
40	Physiological interactions with personal-protective clothing, physically demanding work and global warming: An Asia-Pacific perspective. Journal of Thermal Biology, 2021, 97, 102858.	2.5	10
41	Exercise in the heat induces similar elevations in serum irisin in young and older men despite lower resting irisin concentrations in older adults. Journal of Thermal Biology, 2022, 104, 103189.	2.5	10
42	Do sex differences in thermoregulation pose a concern for female athletes preparing for the Tokyo Olympics?. British Journal of Sports Medicine, 2021, 55, 298-299.	6.7	9
43	Ageing attenuates the effect of extracellular hyperosmolality on wholeâ€body heat exchange during exerciseâ€heat stress. Journal of Physiology, 2020, 598, 5133-5148.	2.9	8
44	Type 2 diabetes does not exacerbate body heat storage in older adults during brief, extreme passive heat exposure. Temperature, 2020, 7, 263-269.	3.0	8
45	Heart rate variability in older workers during work under the Threshold Limit Values for heat exposure. American Journal of Industrial Medicine, 2020, 63, 787-795.	2.1	8
46	Heart rate variability in older men on the day following prolonged work in the heat. Journal of Occupational and Environmental Hygiene, 2020, 17, 383-389.	1.0	8
47	Impact of uncomplicated controlled hypertension on thermoregulation during exercise-heat stress. Journal of Human Hypertension, 2020, 35, 880-883.	2.2	8
48	Regional variation in the reliability of sweat rate measured via the ventilated capsule technique during passive heating. Experimental Physiology, 2021, 106, 615-633.	2.0	8
49	Physical characteristics cannot be used to predict cooling time using cold-water immersion as a treatment for exertional hyperthermia. Applied Physiology, Nutrition and Metabolism, 2018, 43, 857-860.	1.9	7
50	Impaired whole-body heat loss in type 1 diabetes during exercise in the heat: a cause for concern?. Diabetologia, 2019, 62, 1087-1089.	6.3	7
51	Heart rate variability dynamics during treatment for exertional heat strain when immediate response is not possible. Experimental Physiology, 2019, 104, 845-854.	2.0	7
52	Cutaneous vasomotor adaptation following repeated, isothermal heat exposures: evidence of adaptation specificity. Applied Physiology, Nutrition and Metabolism, 2018, 43, 415-418.	1.9	6
53	Age differences in cardiac autonomic regulation during intermittent exercise in the heat. European Journal of Applied Physiology, 2020, 120, 453-465.	2.5	6
54	Exercise-heat tolerance in middle-aged-to-older men with type 2 diabetes. Acta Diabetologica, 2021, 58, 809-812.	2.5	6

#	Article	IF	CITATIONS
55	Scaling the peak and steady-state aerobic power of running and walking humans. European Journal of Applied Physiology, 2021, 121, 2925-2938.	2.5	6
56	Serum Klotho Concentrations in Young and Older Men During Prolonged Exercise in Temperate and Hot Conditions. Current Aging Science, 2022, 15, 180-185.	1.2	6
57	Self-reported physical activity level does not alter whole-body total heat loss independently of aerobic fitness in young adults during exercise in the heat. Applied Physiology, Nutrition and Metabolism, 2019, 44, 99-102.	1.9	5
58	Wholeâ€body heat exchange in blackâ€African and Caucasian men during exercise eliciting matched heatâ€loss requirements in dry heat. Experimental Physiology, 2020, 105, 7-12.	2.0	5
59	Cardiac autonomic modulation in type 1 diabetes during exercise-heat stress. Acta Diabetologica, 2020, 57, 959-963.	2.5	5
60	Myths and methodologies: Reliability of forearm cutaneous vasodilatation measured using laserâ€Doppler flowmetry during wholeâ€body passive heating. Experimental Physiology, 2021, 106, 634-652.	2.0	5
61	Effect of exercise-heat acclimation on cardiac autonomic modulation in type 2 diabetes: a pilot study. Applied Physiology, Nutrition and Metabolism, 2021, 46, 284-287.	1.9	5
62	Diminished heart rate variability in type 2 diabetes is exacerbated during exercise-heat stress. Acta Diabetologica, 2020, 57, 899-901.	2.5	5
63	Determinants of heat stress and strain in electrical utilities workers across North America as assessed by means of an exploratory questionnaire. Journal of Occupational and Environmental Hygiene, 2022, 19, 12-22.	1.0	5
64	Revisiting the dermatomal recruitment of, and pressure-dependent influences on, human eccrine sweating. Journal of Thermal Biology, 2019, 82, 52-62.	2.5	4
65	The Hexoskin physiological monitoring shirt does not impair whole-body heat loss during exercise in hot-dry conditions. Applied Physiology, Nutrition and Metabolism, 2019, 44, 332-335.	1.9	4
66	Blunted circulating irisin in adults with type 1 diabetes during aerobic exercise in a hot environment: a pilot study. Applied Physiology, Nutrition and Metabolism, 2020, 45, 679-682.	1.9	4
67	Heat Exchange in Young and Older Men during Constant- and Variable-Intensity Work. Medicine and Science in Sports and Exercise, 2020, 52, 2628-2636.	0.4	4
68	The Influence of Ingestion Time on the Validity of Gastrointestinal Pill Temperature as an Index of Body Core Temperature During Work in the Heat. FASEB Journal, 2019, 33, 842.7.	0.5	4
69	Cooling strategies for firefighters: Effects on physiological, physical, and visuo-motor outcomes following fire-fighting tasks in the heat. Journal of Thermal Biology, 2022, 106, 103236.	2.5	4
70	The impact of thermal pre-conditioning on cutaneous vasomotor and shivering thresholds. Extreme Physiology and Medicine, 2015, 4, A117.	2.5	3
71	Whole-body heat exchange in women during constant- and variable-intensity work in the heat. European Journal of Applied Physiology, 2020, 120, 2665-2675.	2.5	3
72	Effects of exercise-heat stress on circulating stress hormones and interleukin-6 in young and older men. Temperature, 2020, 7, 389-393.	3.0	3

#	Article	lF	CITATIONS
73	An exploratory survey of heat stress management programs in the electric power industry. Journal of Occupational and Environmental Hygiene, 2021, 18, 436-445.	1.0	3
74	The impact of age, type 2 diabetes and hypertension on heart rate variability during rest and exercise at increasing levels of heat stress. European Journal of Applied Physiology, 2022, 122, 1249-1259.	2.5	3
75	Revisiting regional variation in the ageâ€related reduction inÂsweat rate during passive heat stress. Physiological Reports, 2022, 10, e15250.	1.7	3
76	Is the dermatomal recruitment of sweating a physiological reality or a misinterpretation?. Extreme Physiology and Medicine, 2015, 4, .	2.5	2
77	Individual differences in thermoeffector function in the heat: morphological variations help determine effector activation. Extreme Physiology and Medicine, 2015, 4, A102.	2.5	2
78	Intermittent sequential pneumatic compression does not enhance whole-body heat loss in elderly adults during extreme heat exposure. Applied Physiology, Nutrition and Metabolism, 2019, 44, 1383-1386.	1.9	2
79	Myths and methodologies: Reliability of nonâ€invasive estimates of cardiac autonomic modulation during wholeâ€body passive heating. Experimental Physiology, 2021, 106, 593-614.	2.0	2
80	Heat adaptation in humans: extrapolating from basic to applied science. European Journal of Applied Physiology, 2021, 121, 1237-1238.	2.5	2
81	Initial stay times for uncompensable occupational heat stress in young and older men: a preliminary assessment. Applied Physiology, Nutrition and Metabolism, 2021, , .	1.9	2
82	Effects of shortâ€term heat acclimation on wholeâ€body heat exchange and local nitric oxide synthase― and cyclooxygenaseâ€dependent heat loss responses in exercising older men. Experimental Physiology, 2021, 106, 450-462.	2.0	2
83	Heat Strain in Middleâ€aged and Young Men During Prolonged Work in the Heat. FASEB Journal, 2020, 34, 1-1.	0.5	2
84	Effects of sex and wet-bulb globe temperature on heart rate variability during prolonged moderate-intensity exercise: a secondary analysis. Applied Physiology, Nutrition and Metabolism, 2022, 47, 725-736.	1.9	2
85	Effect of extracellular hyperosmolality during normothermia and hyperthermia on the autophagic response in peripheral blood mononuclear cells from young men. Journal of Applied Physiology, 2022, 132, 995-1004.	2.5	2
86	Postural influences on sweating: exploring the effects of gravity and pressure. Extreme Physiology and Medicine, 2015, 4, A154.	2.5	1
87	Postexercise whole-body sweating increases during muscle metaboreceptor activation in young men. Applied Physiology, Nutrition and Metabolism, 2018, 43, 423-426.	1.9	1
88	Characterizing Heat Stress and Strain in Electric Utility Workers by Means of a Questionnaire. FASEB Journal, 2018, 32, .	0.5	1
89	The effect of extracellular hyperosmolality on sweat rate during metaboreflex activation in passively heated young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, , .	1.8	1
90	Aerobic Fitness Modulates Whole-body Heat Loss in Young Adult Females during Exercise in the Heat. Medicine and Science in Sports and Exercise, 2017, 49, 449.	0.4	0

#	Article	IF	CITATIONS
91	Prolonged Work in the Heat Impairs Heat Loss on the Next day in Older Men. Medicine and Science in Sports and Exercise, 2018, 50, 621.	0.4	0
92	Defining Acceptable Coldâ€Water Immersion Times for the Treatment of Exertional Hyperthermia When Rectal Temperature Measurements are not Available. FASEB Journal, 2018, 32, 859.4.	0.5	0
93	Hypohydration does not Exacerbate Ageâ€related Impairments in Wholeâ€body Heat Loss during Exercise in the Heat FASEB Journal, 2018, 32, 859.3.	0.5	0
94	On the effects of constant and variable work of equivalent average intensity on wholeâ€body heat exchange. FASEB Journal, 2019, 33, 842.4.	0.5	0
95	A Preliminary Analysis of the Interâ€Individual Determinants of Wholeâ€Body Heat Exchange in 100 Young Men and Women during Exercise in the Heat. FASEB Journal, 2019, 33, 842.8.	0.5	0
96	Regional Variations in the Reliability of Local Sweat Rate Measured via the Ventilated Capsule Technique during Wholeâ€body Passive Heating. FASEB Journal, 2020, 34, 1-1.	0.5	0
97	Reliability of Reflex Cutaneous Vasodilation on the Forearm Measured Using Laserâ€Doppler Flowmetry During Wholeâ€body Passive Heating. FASEB Journal, 2020, 34, 1-1.	0.5	0
98	Autophagy and Heat Shock Protein 70 Expression During Acute Heat Stress in Isosmotic and Hyperosmotic Conditions in Peripheral Blood Mononuclear Cells from Young Adults: Preliminary Data. FASEB Journal, 2020, 34, 1-1.	0.5	0
99	Blunted Effects of Elevated Serum Osmolality on Wholeâ€body Heat Loss and Rectal Temperature in Middleâ€agedâ€toâ€older Men Exercising in Dry Heat. FASEB Journal, 2020, 34, 1-1.	0.5	0
100	On the Effect of Sex on Heat Strain During Prolonged Work in the Heat. FASEB Journal, 2020, 34, 1-1.	0.5	0
101	Wholeâ€body Heat Exchange in Young and Middleâ€Aged Men during Constant―and Variableâ€Intensity Work of Equivalent Metabolic Demand in Dry Heat. FASEB Journal, 2020, 34, 1-1.	0.5	0
102	Blunted Autophagy and Heat Shock Responses in Peripheral Blood Mononuclear Cells of Elderly Adults During Prolonged, Extremeâ€Heat Exposure. FASEB Journal, 2020, 34, 1-1.	0.5	0