
Oliver Werz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	5-Lipoxygenase: regulation of expression and enzyme activity. Trends in Biochemical Sciences, 2007, 32, 332-341.	7.5	401
2	5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 331-339.	2.4	371
3	Multi-target approach for natural products in inflammation. Drug Discovery Today, 2014, 19, 1871-1882.	6.4	241
4	Boswellia serrata. Clinical Pharmacokinetics, 2011, 50, 349-369.	3.5	236
5	The Nuclear Receptor for Melatonin Represses 5-Lipoxygenase Gene Expression in Human B Lymphocytes. Journal of Biological Chemistry, 1995, 270, 7037-7040.	3.4	230
6	Therapeutic options for 5-lipoxygenase inhibitors. , 2006, 112, 701-718.		223
7	Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nature Communications, 2018, 9, 59.	12.8	211
8	Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochemical Pharmacology, 2002, 64, 1767-1775.	4.4	209
9	Boswellic Acids: Biological Actions and Molecular Targets. Current Medicinal Chemistry, 2006, 13, 3359-3369.	2.4	186
10	ERK-mediated regulation of leukotriene biosynthesis by androgens: A molecular basis for gender differences in inflammation and asthma. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19881-19886.	7.1	177
11	5-Lipoxygenase: Cellular Biology and Molecular Pharmacology. Inflammation and Allergy: Drug Targets, 2002, 1, 23-44.	3.1	170
12	Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes. Blood, 2002, 99, 1044-1052.	1.4	165
13	5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opinion on Therapeutic Patents, 2010, 20, 355-375.	5.0	157
14	Licofelone Suppresses Prostaglandin E ₂ Formation by Interference with the Inducible Microsomal Prostaglandin E ₂ Synthase-1. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 975-982.	2.5	156
15	Inhibition of 5-Lipoxygenase Product Synthesis by Natural Compounds of Plant Origin. Planta Medica, 2007, 73, 1331-1357.	1.3	144
16	Development of 5-lipoxygenase inhibitors—lessons from cellular enzyme regulation. Biochemical Pharmacology, 2005, 70, 327-333.	4.4	140
17	Structure-Based Discovery of Inhibitors of Microsomal Prostaglandin E ₂ Synthaseâ^1, 5-Lipoxygenase and 5-Lipoxygenase-Activating Protein: Promising Hits for the Development of New Anti-inflammatory Agents. Journal of Medicinal Chemistry, 2011, 54, 1565-1575.	6.4	139
18	Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nature Chemical Biology, 2020, 16, 783-790.	8.0	129

#	Article	IF	CITATIONS
19	Extracellular signalâ€regulated kinases phosphorylate 5lipoxygenase and stimulate 5â€lipoxygenase product formation in leukocytes. FASEB Journal, 2002, 16, 1441-1443.	0.5	126
20	Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochemical Pharmacology, 2008, 76, 91-97.	4.4	123
21	Revealing the macromolecular targets of complex natural products. Nature Chemistry, 2014, 6, 1072-1078.	13.6	114
22	Phosphorylation―and stimulusâ€dependent inhibition of cellular 5â€lipoxygenase activity by nonredoxâ€ŧype inhibitors. FASEB Journal, 2003, 17, 1-24.	0.5	111
23	The Atlas of Inflammation Resolution (AIR). Molecular Aspects of Medicine, 2020, 74, 100894.	6.4	110
24	Arachidonic Acid Promotes Phosphorylation of 5-Lipoxygenase at Ser-271 by MAPK-activated Protein Kinase 2 (MK2). Journal of Biological Chemistry, 2002, 277, 14793-14800.	3.4	109
25	Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nature Chemical Biology, 2012, 8, 141-143.	8.0	109
26	Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochemical Pharmacology, 2015, 98, 1-15.	4.4	107
27	Pirinixic Acid Derivatives as Novel Dual Inhibitors of Microsomal Prostaglandin E ₂ Synthase-1 and 5-Lipoxygenase. Journal of Medicinal Chemistry, 2008, 51, 8068-8076.	6.4	103
28	Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Molecular Cancer Therapeutics, 2009, 8, 2348-2355.	4.1	103
29	Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nature Communications, 2018, 9, 3834.	12.8	101
30	Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 119-131.	4.9	96
31	Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB Journal, 2019, 33, 6140-6153.	0.5	95
32	Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13150-13155.	7.1	93
33	Identification of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 as functional targets of the anti-inflammatory and anti-carcinogenic garcinol. Biochemical Pharmacology, 2009, 77, 1513-1521.	4.4	93
34	Selenium-Dependent Peroxidases Suppress 5-Lipoxygenase Activity in B-Lymphocytes and Immature Myeloid Cells. The Presence of Peroxidase-Insensitive 5-Lipoxygenase Activity in Differentiated Myeloid Cells. FEBS Journal, 1996, 242, 90-97.	0.2	92
35	ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Human Molecular Genetics, 2007, 17, 1052-1060.	2.9	91
36	Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochemical Pharmacology, 2008, 75, 503-513.	4.4	89

#	Article	IF	CITATIONS
37	Carnosol and Carnosic Acids from <i>Salvia officinalis</i> Inhibit Microsomal Prostaglandin E ₂ Synthase-1. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 169-176.	2.5	84
38	Myrtucommulone from <i>Myrtus communis</i> Exhibits Potent Anti-Inflammatory Effectiveness in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 76-86.	2.5	83
39	The 5-Lipoxygenase Promoter Is Regulated by DNA Methylation. Journal of Biological Chemistry, 2002, 277, 4374-4379.	3.4	82
40	Identification of Molecular Targets of the Oligomeric Nonprenylated Acylphloroglucinols from Myrtus communis and Their Implication as Anti-Inflammatory Compounds. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 389-396.	2.5	82
41	Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo. Biochemical Pharmacology, 2011, 81, 259-268.	4.4	81
42	Testosterone suppresses phospholipase D, causing sex differences in leukotriene biosynthesis in human monocytes. FASEB Journal, 2011, 25, 3377-3387.	0.5	80
43	Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2546-2551.	7.1	80
44	Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin. Biochemical Pharmacology, 2013, 86, 476-486.	4.4	79
45	Phorbol ester up-regulates capacities for nuclear translocation and phosphorylation of 5-lipoxygenase in Mono Mac 6 cells and human polymorphonuclear leukocytes. Blood, 2001, 97, 2487-2495.	1.4	76
46	Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. PharmaNutrition, 2014, 2, 53-60.	1.7	76
47	Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. Journal of Clinical Investigation, 2017, 127, 3167-3176.	8.2	75
48	Identification of Human Cathepsin G As a Functional Target of Boswellic Acids from the Anti-Inflammatory Remedy Frankincense. Journal of Immunology, 2009, 183, 3433-3442.	0.8	72
49	Coordinate Functional Regulation between Microsomal Prostaglandin E Synthase-1 (mPGES-1) and Peroxisome Proliferator-activated Receptor γ (PPARγ) in the Conversion of White-to-brown Adipocytes. Journal of Biological Chemistry, 2013, 288, 28230-28242.	3.4	72
50	Nonredox 5-Lipoxygenase Inhibitors Require Glutathione Peroxidase for Efficient Inhibition of 5-Lipoxygenase Activity. Molecular Pharmacology, 1998, 54, 445-451.	2.3	71
51	Identification of Natural-Product-Derived Inhibitors of 5-Lipoxygenase Activity by Ligand-Based Virtual Screening. Journal of Medicinal Chemistry, 2007, 50, 2640-2646.	6.4	70
52	SARS-CoV-2 Causes Severe Epithelial Inflammation and Barrier Dysfunction. Journal of Virology, 2021, 95, .	3.4	70
53	Tetra- and Pentacyclic Triterpene Acids from the Ancient Anti-inflammatory Remedy Frankincense as Inhibitors of Microsomal Prostaglandin E ₂ Synthase-1. Journal of Natural Products, 2014, 77, 1445-1451.	3.0	69
54	Extraction and Visualization of Potential Pharmacophore Points Using Support Vector Machines:Â Application to Ligand-Based Virtual Screening for COX-2 Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6997-7004.	6.4	67

#	Article	IF	CITATIONS
55	Structural Optimization and Biological Evaluation of 2-Substituted 5-Hydroxyindole-3-carboxylates as Potent Inhibitors of Human 5-Lipoxygenase. Journal of Medicinal Chemistry, 2009, 52, 3474-3483.	6.4	67
56	Reactive oxygen species released from granulocytes stimulate 5-lipoxygenase activity in a B-lymphocytic cell line. FEBS Journal, 2000, 267, 1263-1269.	0.2	66
57	Sex differences in prostaglandin biosynthesis in neutrophils during acute inflammation. Scientific Reports, 2017, 7, 3759.	3.3	65
58	Arylpyrrolizines as Inhibitors of Microsomal Prostaglandin E ₂ Synthase-1 (mPGES-1) or as Dual Inhibitors of mPGES-1 and 5-Lipoxygenase (5-LOX). Journal of Medicinal Chemistry, 2009, 52, 4968-4972.	6.4	64
59	Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor. Chemical Science, 2018, 9, 6899-6903.	7.4	64
60	Design and Development of Microsomal Prostaglandin E ₂ Synthase-1 Inhibitors: Challenges and Future Directions. Journal of Medicinal Chemistry, 2016, 59, 5970-5986.	6.4	63
61	Celecoxib inhibits 5-lipoxygenase. Biochemical Pharmacology, 2008, 76, 862-872.	4.4	62
62	Hyperforin, an Anti-Inflammatory Constituent from St. John's Wort, Inhibits Microsomal Prostaglandin E2 Synthase-1 and Suppresses Prostaglandin E2 Formation in vivo. Frontiers in Pharmacology, 2011, 2, 7.	3.5	62
63	Exploration of the dihydropyrimidine scaffold for the development of new potential anti-inflammatory agents blocking prostaglandin E2 synthase-1 enzyme (mPGES-1). European Journal of Medicinal Chemistry, 2014, 80, 407-415.	5.5	61
64	Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nature Metabolism, 2020, 2, 1316-1331.	11.9	61
65	Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cellular and Molecular Life Sciences, 2009, 66, 2759-2771.	5.4	60
66	In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins. Fìtoterapìâ, 2013, 84, 99-106.	2.2	60
67	One-Step Semisynthesis of Oleacein and the Determination as a 5-Lipoxygenase Inhibitor. Journal of Natural Products, 2014, 77, 441-445.	3.0	60
68	Discovery of Depsides and Depsidones from Lichen as Potent Inhibitors of Microsomal Prostaglandin E2 Synthaseâ€1 Using Pharmacophore Models. ChemMedChem, 2012, 7, 2077-2081.	3.2	58
69	Aminothiazole-Featured Pirinixic Acid Derivatives As Dual 5-Lipoxygenase and Microsomal Prostaglandin E ₂ Synthase-1 Inhibitors with Improved Potency and Efficiency in Vivo. Journal of Medicinal Chemistry, 2013, 56, 9031-9044.	6.4	58
70	Suppression of receptor-mediated Ca2+ mobilization and functional leukocyte responses by hyperforin. Biochemical Pharmacology, 2004, 67, 1531-1539.	4.4	56
71	Lignan Derivatives from <i>Krameria lappacea</i> Roots Inhibit Acute Inflammation in Vivo and Pro-inflammatory Mediators in Vitro. Journal of Natural Products, 2011, 74, 1779-1786.	3.0	56
72	Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E2 synthase-1. Bioorganic and Medicinal Chemistry, 2009, 17, 7924-7932.	3.0	55

#	Article	IF	CITATIONS
73	Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity. Nucleic Acids Research, 2014, 42, 12555-12569.	14.5	54
74	Pharmacophore Modeling and Virtual Screening for Novel Acidic Inhibitors of Microsomal Prostaglandin E ₂ Synthase-1 (mPGES-1). Journal of Medicinal Chemistry, 2011, 54, 3163-3174.	6.4	53
75	Increased Bioavailability of 11â€Ketoâ€Î²â€Boswellic Acid Following Single Oral Dose Frankincense Extract Administration After a Standardized Meal in Healthy Male Volunteers: Modeling and Simulation Considerations for Evaluating Drug Exposures. Journal of Clinical Pharmacology, 2012, 52, 1592-1600.	2.0	53
76	Small molecules intercept Notch signaling and the early secretory pathway. Nature Chemical Biology, 2013, 9, 731-738.	8.0	53
77	SAR Studies on Curcumin's Pro-inflammatory Targets: Discovery of Prenylated Pyrazolocurcuminoids as Potent and Selective Novel Inhibitors of 5-Lipoxygenase. Journal of Medicinal Chemistry, 2014, 57, 5638-5648.	6.4	53
78	αâ€Tocopherol longâ€chain metabolite αâ€13'â€COOH affects the inflammatory response of lipopolysaccharideâ€activated murine RAW264.7 macrophages. Molecular Nutrition and Food Research, 2015, 59, 1524-1534.	3.3	53
79	Mitochondrial Chaperonin HSP60 Is the Apoptosis-Related Target for Myrtucommulone. Cell Chemical Biology, 2017, 24, 614-623.e6.	5.2	52
80	Region-Specific Proteome Changes of the Intestinal Epithelium during Aging and Dietary Restriction. Cell Reports, 2020, 31, 107565.	6.4	52
81	On the interference of boswellic acids with 5-lipoxygenase: Mechanistic studies in vitro and pharmacological relevance. European Journal of Pharmacology, 2009, 606, 246-254.	3.5	51
82	Total Synthesis of Myrtucommuloneâ€A. Angewandte Chemie - International Edition, 2010, 49, 2045-2049.	13.8	51
83	Timeâ€resolved <i>in situ</i> assembly of the leukotrieneâ€synthetic 5â€lipoxygenase/5â€lipoxygenaseâ€activatir protein complex in blood leukocytes. FASEB Journal, 2016, 30, 276-285.	1g 0.5	51
84	Sex-biased eicosanoid biology: Impact for sex differences in inflammation and consequences for pharmacotherapy. Biochemical Pharmacology, 2017, 145, 1-11.	4.4	51
85	Algal Oxylipins Mediate the Resistance of Diatoms against Algicidal Bacteria. Marine Drugs, 2018, 16, 486.	4.6	51
86	Butyrate-Induced Differentiation of Caco-2 Cells Is Mediated by Vitamin D Receptor. Biochemical and Biophysical Research Communications, 2001, 288, 690-696.	2.1	50
87	Structural Insights for the Optimization of Dihydropyrimidin-2(1 <i>H</i>)-one Based mPGES-1 Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 187-191.	2.8	50
88	Antiâ€inflammatory and analgesic activity of carnosol and carnosic acid <i>in vivo</i> and <i>in vitro</i> and <i>in silico</i> analysis of their target interactions. British Journal of Pharmacology, 2017, 174, 1497-1508.	5.4	50
89	Molecular pharmacological profile of the nonredox-type 5-lipoxygenase inhibitor CJ-13,610. British Journal of Pharmacology, 2004, 142, 861-868.	5.4	49
90	The Molecular Pharmacology and In Vivo Activity of 2-(4-Chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid (YS121), a Dual Inhibitor of Microsomal Prostaglandin E ₂ Synthase-1 and 5-Lipoxygenase. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 840-848.	2.5	49

#	Article	IF	CITATIONS
91	Process control and scale-up of modified bacterial cellulose production for tailor-made anti-inflammatory drug delivery systems. Carbohydrate Polymers, 2020, 236, 116062.	10.2	49
92	Design and Synthesis of Novel 2-Amino-5-hydroxyindole Derivatives That Inhibit Human 5-Lipoxygenase. Journal of Medicinal Chemistry, 2006, 49, 4327-4332.	6.4	48
93	Identification of novel benzimidazole derivatives as inhibitors of leukotriene biosynthesis by virtual screening targeting 5-lipoxygenase-activating protein (FLAP). Bioorganic and Medicinal Chemistry, 2012, 20, 3728-3741.	3.0	48
94	Boswellic Acids Stimulate Arachidonic Acid Release and 12-Lipoxygenase Activity in Human Platelets Independent of Ca2+ and Differentially Interact with Platelet-Type 12-Lipoxygenase. Molecular Pharmacology, 2006, 70, 1071-1078.	2.3	47
95	Natural products as inhibitors of prostaglandin E2 and pro-inflammatory 5-lipoxygenase-derived lipid mediator biosynthesis. Biotechnology Advances, 2018, 36, 1709-1723.	11.7	47
96	Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. British Journal of Cancer, 2018, 118, 43-51.	6.4	47
97	Staphylococcus aureus-Derived \hat{I}_{\pm} -Hemolysin Evokes Generation of Specialized Pro-resolving Mediators Promoting Inflammation Resolution. Cell Reports, 2020, 33, 108247.	6.4	47
98	4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP). European Journal of Medicinal Chemistry, 2016, 113, 1-10.	5.5	45
99	In vivo sex differences in leukotriene biosynthesis in zymosan-induced peritonitis. Pharmacological Research, 2014, 87, 1-7.	7.1	44
100	Distinct and overlapping functions of glutathione peroxidases 1 and 2 in limiting NF-κB-driven inflammation through redox-active mechanisms. Redox Biology, 2020, 28, 101388.	9.0	43
101	Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E2 synthase-1. Biochemical and Biophysical Research Communications, 2009, 388, 350-354.	2.1	42
102	Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes. British Journal of Pharmacology, 2004, 141, 223-232.	5.4	41
103	Design, Synthesis, and Biological Evaluation of a Novel Class of Î ³ -Secretase Modulators with PPARÎ ³ Activity. Journal of Medicinal Chemistry, 2010, 53, 4691-4700.	6.4	41
104	2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 820-826.	3.0	41
105	Design and synthesis of a second series of triazole-based compounds as potent dual mPGES-1 and 5-lipoxygenase inhibitors. European Journal of Medicinal Chemistry, 2012, 54, 311-323.	5.5	40
106	Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition. Journal of Lipid Research, 2018, 59, 298-311.	4.2	40
107	Boswellic Acids Activate p42MAPK and p38 MAPK and Stimulate Ca2+ Mobilization. Biochemical and Biophysical Research Communications, 2002, 290, 185-190.	2.1	39
108	Modified Acidic Nonsteroidal Anti-Inflammatory Drugs as Dual Inhibitors of mPGES-1 and 5-LOX. Journal of Medicinal Chemistry, 2012, 55, 8958-8962.	6.4	38

#	Article	IF	CITATIONS
109	An experimental cell-based model for studying the cell biology and molecular pharmacology of 5-lipoxygenase-activating protein in leukotriene biosynthesis. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2961-2969.	2.4	38
110	Discovery of Potent Soluble Epoxide Hydrolase (sEH) Inhibitors by Pharmacophore-Based Virtual Screening. Journal of Chemical Information and Modeling, 2016, 56, 747-762.	5.4	38
111	Discovery and biological evaluation of novel 1,4-benzoquinone and related resorcinol derivatives that inhibit 5-lipoxygenase. European Journal of Medicinal Chemistry, 2013, 67, 269-279.	5.5	37
112	Indirubin Core Structure of Glycogen Synthase Kinase-3 Inhibitors as Novel Chemotype for Intervention with 5-Lipoxygenase. Journal of Medicinal Chemistry, 2014, 57, 3715-3723.	6.4	37
113	Human serum determination and in vitro anti-inflammatory activity of the vitamin E metabolite α-(13'-hydroxy)-6-hydroxychroman. Free Radical Biology and Medicine, 2015, 89, 952-962.	2.9	37
114	V-ATPase inhibition increases cancer cell stiffness and blocks membrane related Ras signaling - a new option for HCC therapy. Oncotarget, 2017, 8, 9476-9487.	1.8	37
115	The Aminosteroid Phospholipase C Antagonist U-73122 (1-[6-[[17-β-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) Potently Inhibits Human 5-Lipoxygenase in Vivo and in Vitro. Molecular Pharmacology, 2005, 67, 1751-1757.	2.3	36
116	Structure and Biosynthetic Assembly of Gulmirecins, Macrolide Antibiotics from the Predatory Bacterium <i>Pyxidicoccus fallax</i> . Chemistry - A European Journal, 2014, 20, 15933-15940.	3.3	36
117	Novel series of benzoquinones with high potency against 5-lipoxygenase in human polymorphonuclear leukocytes. European Journal of Medicinal Chemistry, 2015, 94, 132-139.	5.5	36
118	BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly. Biochemical Pharmacology, 2016, 119, 17-26.	4.4	36
119	Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells?. , 2016, 157, 43-64.		36
120	Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents. Expert Opinion on Therapeutic Patents, 2017, 27, 607-620.	5.0	36
121	Pharmacological profile and efficiency in vivo of diflapolin, the first dual inhibitor of 5-lipoxygenase-activating protein and soluble epoxide hydrolase. Scientific Reports, 2017, 7, 9398.	3.3	36
122	1-Oleoyl-2-acetylglycerol Stimulates 5-Lipoxygenase Activity via a Putative (Phospho)lipid Binding Site within the N-terminal C2-like Domain. Journal of Biological Chemistry, 2005, 280, 26913-26921.	3.4	35
123	Role of p38 mitogenâ€activated protein kinase in linking stearoylâ€CoA desaturaseâ€1 activity with endoplasmic reticulum homeostasis. FASEB Journal, 2015, 29, 2439-2449.	0.5	35
124	Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference. Biochemical Pharmacology, 2012, 83, 115-121.	4.4	34
125	Selective upregulation of TNFα expression in classically-activated human monocyte-derived macrophages (M1) through pharmacological interference with V-ATPase. Biochemical Pharmacology, 2017, 130, 71-82.	4.4	34
126	5â€Lipoxygenaseâ€activating protein rescues activity of 5â€lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. FASEB Journal, 2016, 30, 1892-1900.	0.5	33

#	Article	lF	CITATIONS
127	Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening. Scientific Reports, 2017, 7, 42751.	3.3	33
128	Untangling the web of 5-lipoxygenase-derived products from a molecular and structural perspective: The battle between pro- and anti-inflammatory lipid mediators. Biochemical Pharmacology, 2021, 193, 114759.	4.4	33
129	Connecting lysosomes and mitochondria – a novel role for lipid metabolism in cancer cell death. Cell Communication and Signaling, 2019, 17, 87.	6.5	32
130	A test system for leukotriene synthesis inhibitors based on the in-vitro differentiation of the human leukemic cell lines HL-60 and Mono Mac 6. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 441-445.	3.0	31
131	Imbricaric Acid and Perlatolic Acid: Multi-Targeting Anti-Inflammatory Depsides from Cetrelia monachorum. PLoS ONE, 2013, 8, e76929.	2.5	30
132	Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors. European Journal of Medicinal Chemistry, 2015, 101, 573-583.	5.5	30
133	Sphingosineâ€1â€phosphate (S1P) induces potent antiâ€inflammatory effects <i>in vitro</i> and <i>in vivo</i> by S1P receptor 4â€mediated suppression of 5â€lipoxygenase activity. FASEB Journal, 2019, 33, 1711-1726.	0.5	30
134	Discovery and Biological Evaluation of a Novel Class of Dual Microsomal Prostaglandin E ₂ Synthase-1/5-lipoxygenase Inhibitors Based on 2-[(4,6-Diphenethoxypyrimidin-2-yl)thio]hexanoic Acid. Journal of Medicinal Chemistry, 2011, 54, 4490-4507.	6.4	29
135	Myxochelins Target Human 5-Lipoxygenase. Journal of Natural Products, 2015, 78, 335-338.	3.0	29
136	Can Small Chemical Modifications of Natural Pan-inhibitors Modulate the Biological Selectivity? The Case of Curcumin Prenylated Derivatives Acting as HDAC or mPGES-1 Inhibitors. Journal of Natural Products, 2015, 78, 2867-2879.	3.0	29
137	Discovery of new potent molecular entities able to inhibit mPGES-1. European Journal of Medicinal Chemistry, 2018, 143, 1419-1427.	5.5	29
138	Pyrazol-3-propanoic acid derivatives as novel inhibitors of leukotriene biosynthesis in human neutrophils. European Journal of Medicinal Chemistry, 2011, 46, 5021-5033.	5.5	28
139	Cinnamyl-3,4-Dihydroxy-α-Cyanocinnamate Is a Potent Inhibitor of 5-Lipoxygenase. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 205-213.	2.5	28
140	The novel Sinupret® dry extract exhibits anti-inflammatory effectiveness in vivo. Fìtoterapìâ, 2012, 83, 715-720.	2.2	28
141	Novel and Potent Inhibitors of 5-Lipoxygenase Product Synthesis Based on the Structure of Pirinixic Acid. Journal of Medicinal Chemistry, 2008, 51, 5449-5453.	6.4	27
142	A Multicomponent Carbaâ€Betti Strategy to Alkylidene Heterodimers – Total Synthesis and Structure–Activity Relationships of Arzanol. European Journal of Organic Chemistry, 2012, 2012, 772-779.	2.4	27
143	Chromatographic separation and biological evaluation of benzimidazole derivative enantiomers as inhibitors of leukotriene biosynthesis. Journal of Pharmaceutical and Biomedical Analysis, 2014, 89, 88-92.	2.8	27
144	Anthranilic acid derivatives as novel ligands for farnesoid X receptor (FXR). Bioorganic and Medicinal Chemistry, 2014, 22, 2447-2460.	3.0	27

#	Article	IF	CITATIONS
145	Semisynthetic and Natural Garcinoic Acid Isoforms as New mPGES-1 Inhibitors. Planta Medica, 2016, 82, 1110-1116.	1.3	27
146	Protective effect of piceatannol and bioactive stilbene derivatives against hypoxia-induced toxicity in H9c2 cardiomyocytes and structural elucidation as 5-LOX inhibitors. European Journal of Medicinal Chemistry, 2019, 180, 637-647.	5.5	27
147	The vitamin E derivative garcinoic acid from Garcinia kola nut seeds attenuates the inflammatory response. Redox Biology, 2019, 24, 101166.	9.0	27
148	3-O-Acetyl-11-keto-boswellic Acid Decreases Basal Intracellular Ca2+Levels and Inhibits Agonist-Induced Ca2+Mobilization and Mitogen-Activated Protein Kinase Activation in Human Monocytic Cells. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 224-232.	2.5	26
149	Elucidation of the molecular mechanism and the efficacy <i>in vivo</i> of a novel 1,4â€benzoquinone that inhibits 5â€lipoxygenase. British Journal of Pharmacology, 2014, 171, 2399-2412.	5.4	26
150	The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 1508-1517.	4.9	26
151	Synthesis, structure determination, and biological evaluation of phenylsulfonyl hydrazide derivatives as potential anti-inflammatory agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5193-5197.	2.2	26
152	Pharmacological intervention with 5-lipoxygenase: new insights and novel compounds. Expert Opinion on Therapeutic Patents, 2005, 15, 505-519.	5.0	25
153	MK-886, an inhibitor of the 5-lipoxygenase-activating protein, inhibits cyclooxygenase-1 activity and suppresses platelet aggregation. European Journal of Pharmacology, 2009, 608, 84-90.	3.5	25
154	Synthesis and biological evaluation of novel myrtucommulones and structural analogues that target mPGES-1 and 5-lipoxygenase. European Journal of Medicinal Chemistry, 2015, 101, 133-149.	5.5	25
155	The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo. Biochemical Pharmacology, 2016, 112, 60-71.	4.4	25
156	The hallucinogenic diterpene salvinorin A inhibits leukotriene synthesis in experimental models of inflammation. Pharmacological Research, 2016, 106, 64-71.	7.1	25
157	Optimization of benzoquinone and hydroquinone derivatives as potent inhibitors of human 5-lipoxygenase. European Journal of Medicinal Chemistry, 2017, 127, 715-726.	5.5	25
158	Ginkgolic Acid is a Multi-Target Inhibitor of Key Enzymes in Pro-Inflammatory Lipid Mediator Biosynthesis. Frontiers in Pharmacology, 2019, 10, 797.	3.5	25
159	Caspase-mediated degradation of human 5-lipoxygenase in B lymphocytic cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13164-13169.	7.1	24
160	Cholesterol and its anionic derivatives inhibit 5-lipoxygenase activation in polymorphonuclear leukocytes and MonoMac6 cells. FEBS Journal, 2006, 273, 548-557.	4.7	24
161	12/15-Lipoxygenase Contributes to Platelet-derived Growth Factor-induced Activation of Signal Transducer and Activator of Transcription 3. Journal of Biological Chemistry, 2013, 288, 35592-35603.	3.4	24
162	NMR-based identification of the major bioactive molecules from an Italian cultivar of Lycium barbarum. Phytochemistry, 2017, 144, 52-57.	2.9	24

#	Article	IF	CITATIONS
163	Vacuolar (H+)-ATPase Critically Regulates Specialized Proresolving Mediator Pathways in Human M2-like Monocyte-Derived Macrophages and Has a Crucial Role in Resolution of Inflammation. Journal of Immunology, 2019, 203, 1031-1043.	0.8	24
164	The C2-like β-Barrel Domain Mediates the Ca2+-dependent Resistance of 5-Lipoxygenase Activity Against Inhibition by Glutathione Peroxidase-1. Journal of Biological Chemistry, 2003, 278, 42846-42853.	3.4	23
165	Cell type-dependent activation of 5-lipoxygenase by arachidonic acid. Journal of Leukocyte Biology, 2003, 73, 191-200.	3.3	23
166	Induction of central signalling pathways and select functional effects in human platelets by β -boswellic acid. British Journal of Pharmacology, 2005, 146, 514-524.	5.4	23
167	Sulindac sulfide suppresses 5-lipoxygenase at clinically relevant concentrations. Cellular and Molecular Life Sciences, 2010, 67, 797-806.	5.4	23
168	Characterization of the interaction of human 5-lipoxygenase with its activating protein FLAP. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1465-1472.	2.4	23
169	Exploring the role of chloro and methyl substitutions in 2-phenylthiomethyl-benzoindole derivatives for 5-LOX enzyme inhibition. European Journal of Medicinal Chemistry, 2016, 108, 466-475.	5.5	23
170	Humudifucol and Bioactive Prenylated Polyphenols from Hops (<i>Humulus lupulus</i> cv.) Tj ETQq0 0 0 rgBT	/Overlock 1	0 Tf 50 462 T
171	The Bibenzyl Canniprene Inhibits the Production of Pro-Inflammatory Eicosanoids and Selectively Accumulates in Some <i>Cannabis sativa</i> Strains. Journal of Natural Products, 2017, 80, 731-734.	3.0	23
172	Survey of the C20 and C22 oxylipin family in marine diatoms. Tetrahedron Letters, 2018, 59, 828-831.	1.4	23
173	Lipophilic extracts of Leucas zeylanica, a multi-purpose medicinal plant in the tropics, inhibit key enzymes involved in inflammation and gout. Journal of Ethnopharmacology, 2018, 224, 474-481.	4.1	23
174	A standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase IIa trial). Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 330-338.	1.9	23
175	Specialized proâ€resolving mediators: biosynthesis and biological role in bacterial infections. FEBS Journal, 2022, 289, 4212-4227.	4.7	23
176	Targeting V-ATPase in primary human monocytes by archazolid potently represses the classical secretion of cytokines due to accumulation at the endoplasmic reticulum. Biochemical Pharmacology, 2014, 91, 490-500.	4.4	22
177	Bronchipret® syrup containing thyme and ivy extracts suppresses bronchoalveolar inflammation and goblet cell hyperplasia in experimental bronchoalveolitis. Phytomedicine, 2015, 22, 1172-1177.	5.3	22
178	Gliotoxin from Aspergillus fumigatus Abrogates Leukotriene B4 Formation through Inhibition of Leukotriene A4 Hydrolase. Cell Chemical Biology, 2019, 26, 524-534.e5.	5.2	22
179	Inhibitors of actin polymerisation stimulate arachidonic acid release and 5-lipoxygenase activation by upregulation of Ca2+ mobilisation in polymorphonuclear leukocytes involving Src family kinases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 109-119.	2.4	21
180	Further studies on ethyl 5-hydroxy-indole-3-carboxylate scaffold: Design, synthesis and evaluation of 2-phenylthiomethyl-indole derivatives as efficient inhibitors of human 5-lipoxygenase. European Journal of Medicinal Chemistry, 2014, 81, 492-498.	5.5	21

#	Article	IF	CITATIONS
181	Simplified Pretubulysin Derivatives and Their Biological Effects on Cancer Cells. Journal of Natural Products, 2014, 77, 536-542.	3.0	21
182	Harnessing Enzymatic Promiscuity in Myxochelin Biosynthesis for the Production of 5â€Lipoxygenase Inhibitors. ChemBioChem, 2015, 16, 2445-2450.	2.6	21
183	Structure–Function Relationship Studies In Vitro Reveal Distinct and Specific Effects of Longâ€Chain Metabolites of Vitamin E. Molecular Nutrition and Food Research, 2017, 61, 1700562.	3.3	21
184	Associated Bacteria Affect Sexual Reproduction by Altering Gene Expression and Metabolic Processes in a Biofilm Inhabiting Diatom. Frontiers in Microbiology, 2019, 10, 1790.	3.5	21
185	Encapsulation of the dual FLAP/mPEGS-1 inhibitor BRP-187 into acetalated dextran and PLGA nanoparticles improves its cellular bioactivity. Journal of Nanobiotechnology, 2020, 18, 73.	9.1	21
186	Induction of 5-lipoxygenase activation in polymorphonuclear leukocytes by 1-oleoyl-2-acetylglycerol. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1631, 85-93.	2.4	20
187	Heterocovariance Based Metabolomics as a Powerful Tool Accelerating Bioactive Natural Product Identification. ChemistrySelect, 2016, 1, 2531-2535.	1.5	20
188	Myxochelin- and Pseudochelin-Derived Lipoxygenase Inhibitors from a Genetically Engineered <i>Myxococcus xanthus</i> Strain. Journal of Natural Products, 2019, 82, 2544-2549.	3.0	20
189	Novel benzoxanthene lignans that favorably modulate lipid mediator biosynthesis: A promising pharmacological strategy for anti-inflammatory therapy. Biochemical Pharmacology, 2019, 165, 263-274.	4.4	20
190	Leukotriene-mediated sex dimorphism in murine asthma-like features during allergen sensitization. Pharmacological Research, 2019, 139, 182-190.	7.1	20
191	Olive Oil Extracts and Oleic Acid Attenuate the LPS-Induced Inflammatory Response in Murine RAW264.7 Macrophages but Induce the Release of Prostaglandin E2. Nutrients, 2021, 13, 4437.	4.1	20
192	The role of diacylglyceride generation by phospholipase D and phosphatidic acid phosphatase in the activation of 5-lipoxygenase in polymorphonuclear leukocytes. Journal of Leukocyte Biology, 2008, 83, 1019-1027.	3.3	19
193	A novel class of dual mPGES-1/5-LO inhibitors based on the α-naphthyl pirinixic acid scaffold. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1329-1333.	2.2	19
194	Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy. Scientific Reports, 2017, 7, 41434.	3.3	19
195	Identification of novel microsomal prostaglandin E2 synthase-1 (mPGES-1) lead inhibitors from Fragment Virtual Screening. European Journal of Medicinal Chemistry, 2017, 125, 278-287.	5.5	19
196	Identification of multi-target inhibitors of leukotriene and prostaglandin E2 biosynthesis by structural tuning of the FLAP inhibitor BRP-7. European Journal of Medicinal Chemistry, 2018, 150, 876-899.	5.5	19
197	The interplay between depression and tuberculosis. Journal of Leukocyte Biology, 2019, 106, 749-757.	3.3	19
198	Cyreneâ"¢ as an Alternative Sustainable Solvent for the Preparation of Poly(lactic-co-glycolic acid) Nanoparticles. Journal of Pharmaceutical Sciences, 2021, 110, 959-964.	3.3	19

#	Article	IF	CITATIONS
199	Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. International Journal of Pharmaceutics, 2021, 599, 120404.	5.2	19
200	Endogenous vitamin E metabolites mediate allosteric PPARÎ ³ activation with unprecedented co-regulatory interactions. Cell Chemical Biology, 2021, 28, 1489-1500.e8.	5.2	19
201	Anti-inflammatory celastrol promotes a switch from leukotriene biosynthesis to formation of specialized pro-resolving lipid mediators. Pharmacological Research, 2021, 167, 105556.	7.1	19
202	ATP/ILâ€33â€ŧriggered hyperactivation of mast cells results in an amplified production of proâ€inflammatory cytokines and eicosanoids. Immunology, 2021, 164, 541-554.	4.4	19
203	A vitamin E long-chain metabolite and the inspired drug candidate α-amplexichromanol relieve asthma features in an experimental model of allergen sensitization. Pharmacological Research, 2022, 181, 106250.	7.1	19
204	Identification of 2-mercaptohexanoic acids as dual inhibitors of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1. Bioorganic and Medicinal Chemistry, 2011, 19, 3394-3401.	3.0	18
205	Indirubin-3′-monoxime exerts a dual mode of inhibition towards leukotriene-mediated vascular smooth muscle cell migration. Cardiovascular Research, 2014, 101, 522-532.	3.8	18
206	Discovery of novel, non-acidic mPGES-1 inhibitors by virtual screening with a multistep protocol. Bioorganic and Medicinal Chemistry, 2015, 23, 4839-4845.	3.0	18
207	Predictive Bioinformatic Assignment of Methyl-Bearing Stereocenters, Total Synthesis, and an Additional Molecular Target of Ajudazol B. Journal of Organic Chemistry, 2016, 81, 1333-1357.	3.2	18
208	Hit-to-lead optimization of phenylsulfonyl hydrazides for a potent suppressor of PGE2 production: Synthesis, biological activity, and molecular docking study. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 94-99.	2.2	18
209	Matrixâ€based Molecular Descriptors for Prospective Virtual Compound Screening. Molecular Informatics, 2017, 36, 1600091.	2.5	18
210	Structural insight into the optimization of ethyl 5-hydroxybenzo[g]indol-3-carboxylates and their bioisosteric analogues as 5-LO/m-PGES-1 dual inhibitors able to suppress inflammation. European Journal of Medicinal Chemistry, 2018, 155, 946-960.	5.5	18
211	Development and characterization of bacterial nanocellulose loaded with Boswellia serrata extract containing nanoemulsions as natural dressing for skin diseases. International Journal of Pharmaceutics, 2020, 587, 119635.	5.2	18
212	Controlled masking and targeted release of redox-cycling ortho-quinones via a C–C bond-cleaving 1,6-elimination. Nature Chemistry, 2022, 14, 754-765.	13.6	18
213	Melleolides induce rapid cell death in human primary monocytes and cancer cells. Bioorganic and Medicinal Chemistry, 2014, 22, 3856-3861.	3.0	17
214	Structureâ€Based Design of Microsomal Prostaglandinâ€E ₂ Synthaseâ€4 (mPGESâ€1) Inhibitors using a Virtual Fragment Growing Optimization Scheme. ChemMedChem, 2016, 11, 612-619.	3.2	17
215	Stereoselective total synthesis of parthenolides indicates target selectivity for tubulin carboxypeptidase activity. Chemical Science, 2019, 10, 7358-7364.	7.4	17
216	Impact of Androgens on Inflammation-Related Lipid Mediator Biosynthesis in Innate Immune Cells. Frontiers in Immunology, 2020, 11, 1356.	4.8	17

#	Article	IF	CITATIONS
217	Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenaseâ€l Inhibitors by Automated De Novo Design. Advanced Science, 2021, 8, e2100832.	11.2	17
218	The standardized herbal combination BNO 2103 contained in Canephron® N alleviates inflammatory pain in experimental cystitis and prostatitis. Phytomedicine, 2019, 60, 152987.	5.3	16
219	Melleolides impact fungal translation <i>via</i> elongation factor 2. Organic and Biomolecular Chemistry, 2019, 17, 4906-4916.	2.8	16
220	Exotoxins from Staphylococcus aureus activate 5-lipoxygenase and induce leukotriene biosynthesis. Cellular and Molecular Life Sciences, 2020, 77, 3841-3858.	5.4	16
221	Inhibition of 5-lipoxygenase by U73122 is due to covalent binding to cysteine 416. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 279-286.	2.4	15
222	Inhibition of 5-lipoxygenase as anti-inflammatory mode of action of Plectranthus zeylanicus Benth and chemical characterization of ingredients by a mass spectrometric approach. Journal of Ethnopharmacology, 2014, 151, 800-809.	4.1	15
223	Interference of Boswellic Acids with the Ligand Binding Domain of the Glucocorticoid Receptor. Journal of Chemical Information and Modeling, 2014, 54, 978-986.	5.4	15
224	A Multiâ€step Virtual Screening Protocol for the Identification of Novel Nonâ€acidic Microsomal Prostaglandinâ€E ₂ Synthaseâ€1 (mPGESâ€1) Inhibitors. ChemMedChem, 2019, 14, 273-281.	3.2	15
225	Expanding the Rubterolone Family: Intrinsic Reactivity and Directed Diversification of PKSâ€derived Pyrans. Chemistry - A European Journal, 2018, 24, 11319-11324.	3.3	15
226	Discovery of a benzenesulfonamide-based dual inhibitor of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase that favorably modulates lipid mediator biosynthesis in inflammation. European Journal of Medicinal Chemistry, 2018, 156, 815-830.	5.5	15
227	Targeting mPGES-1 by a Combinatorial Approach: Identification of the Aminobenzothiazole Scaffold to Suppress PGE ₂ Levels. ACS Medicinal Chemistry Letters, 2020, 11, 783-789.	2.8	15
228	A Thromboxane A ₂ Receptor-Driven COX-2–Dependent Feedback Loop That Affects Endothelial Homeostasis and Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 444-461.	2.4	15
229	Hyperforin induces Ca2+-independent arachidonic acid release in human platelets by facilitating cytosolic phospholipase A2 activation through select phospholipid interactions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 462-472.	2.4	14
230	Chemometrics-guided development of a cyclodextrin-modified micellar electrokinetic chromatography method with head-column field amplified sample stacking for the analysis of 5-lipoxygenase metabolites. Journal of Chromatography A, 2012, 1267, 217-223.	3.7	14
231	A novel C(28)-hydroxylated lupeolic acid suppresses the biosynthesis of eicosanoids through inhibition of cytosolic phospholipase A2. Biochemical Pharmacology, 2012, 84, 681-691.	4.4	14
232	Particulate transepithelial drug carriers: barriers and functional polymers. RSC Advances, 2012, 2, 10427.	3.6	14
233	Boswellic acids target the human immune system-modulating antimicrobial peptide LL-37. Pharmacological Research, 2015, 102, 53-60.	7.1	14
234	Protective Effect of Casperome®, an Orally Bioavailable Frankincense Extract, on Lipopolysaccharide- Induced Systemic Inflammation in Mice. Frontiers in Pharmacology, 2018, 9, 387.	3.5	14

#	Article	IF	CITATIONS
235	Improved Bioactivity of the Natural Product 5-Lipoxygenase Inhibitor Hyperforin by Encapsulation into Polymeric Nanoparticles. Molecular Pharmaceutics, 2020, 17, 810-816.	4.6	14
236	Shifting the Biosynthesis of Leukotrienes Toward Specialized Pro-Resolving Mediators by the 5-Lipoxygenase-Activating Protein (FLAP) Antagonist BRP-201. Journal of Inflammation Research, 2022, Volume 15, 911-925.	3.5	14
237	SAR studies of acidic dual Î ³ -secretase/PPARÎ ³ modulators. Bioorganic and Medicinal Chemistry, 2011, 19, 5372-5382.	3.0	13
238	Pharmacophore-based discovery of a novel cytosolic phospholipase A2α inhibitor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1202-1207.	2.2	13
239	Identification of pirinixic acid derivatives bearing a 2-aminothiazole moiety combines dual PPARα/γ activation and dual 5-LO/mPGES-1 inhibition. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3757-3763.	2.2	13
240	Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G. Molecules, 2018, 23, 506.	3.8	13
241	A novel mPGES-1 inhibitor alleviates inflammatory responses by downregulating PGE2 in experimental models. Prostaglandins and Other Lipid Mediators, 2019, 144, 106347.	1.9	13
242	Melleolides from Honey Mushroom Inhibit 5-Lipoxygenase via Cys159. Cell Chemical Biology, 2019, 26, 60-70.e4.	5.2	13
243	Diversity of Chromanol and Chromenol Structures and Functions: An Emerging Class of Anti-Inflammatory and Anti-Carcinogenic Agents. Frontiers in Pharmacology, 2020, 11, 362.	3.5	13
244	Effect of Crystallinity on the Properties of Polycaprolactone Nanoparticles Containing the Dual FLAP/mPEGS-1 Inhibitor BRP-187. Polymers, 2021, 13, 2557.	4.5	13
245	Natural chalcones elicit formation of specialized pro-resolving mediators and related 15-lipoxygenase products in human macrophages. Biochemical Pharmacology, 2022, 195, 114825.	4.4	13
246	Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model. Biomaterials, 2022, 287, 121632.	11.4	13
247	Extracellular signal-regulated kinase-2 phosphorylates RORα4 in vitro. Biochemical and Biophysical Research Communications, 2007, 358, 890-896.	2.1	12
248	Determination of Myrtucommulone from <i>Myrtus communis</i> in Human and Rat Plasma by Liquid Chromatography/Tandem Mass Spectrometry. Planta Medica, 2011, 77, 450-454.	1.3	12
249	From Virtual Screening to Bioactive Compounds by Visualizing and Clustering of Chemical Space. Molecular Informatics, 2012, 31, 21-26.	2.5	12
250	Progesterone rapidly down-regulates the biosynthesis of 5-lipoxygenase products in human primary monocytes. Pharmacological Research, 2015, 94, 42-50.	7.1	12
251	Elucidating new structural features of the triazole scaffold for the development of mPGES-1 inhibitors. MedChemComm, 2015, 6, 75-79.	3.4	12
252	Liquid chromatography-coupled mass spectrometry analysis of glutathione conjugates of oxygenated polyunsaturated fatty acids. Prostaglandins and Other Lipid Mediators, 2019, 144, 106350.	1.9	12

#	Article	IF	CITATIONS
253	Modified Bacterial Cellulose Dressings to Treat Inflammatory Wounds. Nanomaterials, 2020, 10, 2508.	4.1	12
254	Controlled Release of the α-Tocopherol-Derived Metabolite α-13′-Carboxychromanol from Bacterial Nanocellulose Wound Cover Improves Wound Healing. Nanomaterials, 2021, 11, 1939.	4.1	12
255	Structure-based screening for the discovery of 1,2,4-oxadiazoles as promising hits for the development of new anti-inflammatory agents interfering with eicosanoid biosynthesis pathways. European Journal of Medicinal Chemistry, 2021, 224, 113693.	5.5	12
256	Dual Induction of Mitochondrial Apoptosis and Senescence in Chronic Myelogenous Leukemia by Myrtucommulone A. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 363-373.	1.7	12
257	Development of a method for expression and purification of the regulatory C2-like domain of human 5-lipoxygenase. Protein Expression and Purification, 2008, 59, 110-116.	1.3	11
258	A procedure for efficient non-viral siRNA transfection of primary human monocytes using nucleofection. Journal of Immunological Methods, 2015, 422, 118-124.	1.4	11
259	Analgesic potential of standardized methanol stem bark extract of Ficus platyphylla in mice: Mechanisms of action. Journal of Ethnopharmacology, 2016, 184, 101-106.	4.1	11
260	The indirubin derivative 6-bromoindirubin-3′-glycerol-oxime ether (6BIGOE) potently modulates inflammatory cytokine and prostaglandin release from human monocytes through GSK-3 interference. Biochemical Pharmacology, 2020, 180, 114170.	4.4	11
261	Aging drives organâ€specific alterations of the inflammatory microenvironment guided by immunomodulatory mediators in mice. FASEB Journal, 2021, 35, e21558.	0.5	11
262	5α-dihydrotestosterone abrogates sex bias in asthma like features in the mouse. Pharmacological Research, 2020, 158, 104905.	7.1	11
263	Proteomic and lipidomic profiling of demyelinating lesions identifies fatty acids as modulators in lesion recovery. Cell Reports, 2021, 37, 109898.	6.4	11
264	The α-tocopherol-derived long-chain metabolite α-13′-COOH mediates endotoxin tolerance and modulates the inflammatory response via MAPK and NFκB pathways. Free Radical Biology and Medicine, 2022, 178, 83-96.	2.9	11
265	Myrtucommulone from Myrtus communis: Metabolism, Permeability, and Systemic Exposure in Rats. Planta Medica, 2012, 78, 1932-1938.	1.3	10
266	Identification of new Î ³ -hydroxybutenolides that preferentially inhibit the activity of mPGES-1. Bioorganic and Medicinal Chemistry, 2012, 20, 5012-5016.	3.0	10
267	Development of smart cell-free and cell-based assay systems for investigation of leukotriene C 4 synthase activity and evaluation of inhibitors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1605-1613.	2.4	10
268	Evaluation of Dual 5-Lipoxygenase/Microsomal Prostaglandin E2 Synthase-1 Inhibitory Effect of Natural and Synthetic Acronychia-Type Isoprenylated Acetophenones. Journal of Natural Products, 2017, 80, 699-706.	3.0	10
269	Discovery of 3-hydroxy-3-pyrrolin-2-one-based mPGES-1 inhibitors using a multi-step virtual screening protocol. MedChemComm, 2018, 9, 2028-2036.	3.4	10
270	Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. International Journal of Molecular Sciences, 2020, 21, 7102.	4.1	10

#	Article	IF	CITATIONS
271	Allelic-Specific Regulation of xCT Expression Increases Susceptibility to Tuberculosis by Modulating microRNA-mRNA Interactions. MSphere, 2020, 5, .	2.9	10
272	Analysis of Boswellic Acid Contents and Related Pharmacological Activities of Frankincense-Based Remedies That Modulate Inflammation. Pharmaceuticals, 2021, 14, 660.	3.8	10
273	5-Lipoxygenase Activation by Mapkapk-2 and Erks. Advances in Experimental Medicine and Biology, 2003, 525, 129-132.	1.6	10
274	New vitamin D receptor agonists with decreased metabolic stability. Biochemical Pharmacology, 2000, 59, 1597-1601.	4.4	9
275	Synthesis and biological evaluation of C(5)-substituted derivatives of leukotriene biosynthesis inhibitor BRP-7. European Journal of Medicinal Chemistry, 2016, 122, 510-519.	5.5	9
276	Myxochelinâ€Inspired 5â€Lipoxygenase Inhibitors: Synthesis and Biological Evaluation. ChemMedChem, 2017, 12, 23-27.	3.2	9
277	A tiered approach to investigate the mechanism of anti-inflammatory activity of an herbal medicinal product containing a fixed combination of thyme herb and primula root extracts. Clinical Phytoscience, 2018, 4, .	1.6	9
278	Structure-based design, semi-synthesis and anti-inflammatory activity of tocotrienolic amides as 5-lipoxygenase inhibitors. European Journal of Medicinal Chemistry, 2020, 202, 112518.	5.5	9
279	Discovery of Novel 5-Lipoxygenase-Activating Protein (FLAP) Inhibitors by Exploiting a Multistep Virtual Screening Protocol. Journal of Chemical Information and Modeling, 2020, 60, 1737-1748.	5.4	9
280	A Combinatorial Virtual Screening Approach Driving the Synthesis of 2,4â€Thiazolidinedioneâ€Based Molecules as New Dual mPGESâ€1/5â€LO Inhibitors. ChemMedChem, 2020, 15, 481-489.	3.2	9
281	Beneficial Modulation of Lipid Mediator Biosynthesis in Innate Immune Cells by Antirheumatic Tripterygium wilfordii Glycosides. Biomolecules, 2021, 11, 746.	4.0	9
282	Mitochondrial Fusion Mediated by Mitofusin 1 Regulates Macrophage Mycobactericidal Activity by Enhancing Autophagy. Infection and Immunity, 2021, 89, e0030621.	2.2	9
283	Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care. Pharmaceuticals, 2022, 15, 683.	3.8	9
284	Pirinixic acids: flexible fatty acid mimetics with various biological activities. Future Medicinal Chemistry, 2015, 7, 1597-1616.	2.3	8
285	Synthesis, Biological Evaluation and Structure–Activity Relationships of Diflapolin Analogues as Dual sEH/FLAP Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 62-66.	2.8	8
286	Genetic polymorphism rs8193036 of IL17A is associated with increased susceptibility to pulmonary tuberculosis in Chinese Han population. Cytokine, 2020, 127, 154956.	3.2	8
287	Optimized Encapsulation of the FLAP/PGES-1 Inhibitor BRP-187 in PVA-Stabilized PLGA Nanoparticles Using Microfluidics. Polymers, 2020, 12, 2751.	4.5	8
288	The Anti-Inflammatory and Antimicrobial Potential of Selected Ethnomedicinal Plants from Sri Lanka. Molecules, 2020, 25, 1894.	3.8	8

#	Article	IF	CITATIONS
289	<i>Candida albicans</i> â€induced leukotriene biosynthesis in neutrophils is restricted to the hyphal morphology. FASEB Journal, 2021, 35, e21820.	0.5	8
290	Modulation of microRNA processing by 5â€lipoxygenase. FASEB Journal, 2021, 35, e21193.	0.5	8
291	The Natural Combination Medicine Traumeel (Tr14) Improves Resolution of Inflammation by Promoting the Biosynthesis of Specialized Pro-Resolving Mediators. Pharmaceuticals, 2021, 14, 1123.	3.8	8
292	<i>Staphylococcus aureus</i> controls eicosanoid and specialized proâ€resolving mediator production via lipoteichoic acid. Immunology, 2022, 166, 47-67.	4.4	8
293	Munronia pinnata (Wall.) Theob.: Unveiling phytochemistry and dual inhibition of 5-lipoxygenase and microsomal prostaglandin E2 synthase (mPGES)-1. Journal of Ethnopharmacology, 2014, 151, 882-890.	4.1	7
294	Communication between human macrophages and epithelial cancer cell lines dictates lipid mediator biosynthesis. Cellular and Molecular Life Sciences, 2020, 77, 4365-4378.	5.4	7
295	Biocompatible valproic acid-coupled nanoparticles attenuate lipopolysaccharide-induced inflammation. International Journal of Pharmaceutics, 2021, 601, 120567.	5.2	7
296	From Vietnamese plants to a biflavonoid that relieves inflammation by triggering the lipid mediator class switch to resolution. Acta Pharmaceutica Sinica B, 2021, 11, 1629-1647.	12.0	7
297	Exploration of Long-Chain Vitamin E Metabolites for the Discovery of a Highly Potent, Orally Effective, and Metabolically Stable 5-LOX Inhibitor that Limits Inflammation. Journal of Medicinal Chemistry, 2021, 64, 11496-11526.	6.4	7
298	The Trace Element Selenium Is Important for Redox Signaling in Phorbol Ester-Differentiated THP-1 Macrophages. International Journal of Molecular Sciences, 2021, 22, 11060.	4.1	7
299	Drug delivery of 6-bromoindirubin-3'-glycerol-oxime ether employing poly(d,l-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents. Journal of Nanobiotechnology, 2022, 20, 5.	9.1	7
300	Novel potent benzimidazole-based microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors derived from BRP-201 that also inhibit leukotriene C4 synthase. European Journal of Medicinal Chemistry, 2022, 231, 114167.	5.5	7
301	Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene formation by a novel FLAP antagonist in human leukocytes and blood. Cellular and Molecular Life Sciences, 2022, 79, 1.	5.4	7
302	2â€(4â€(Biphenylâ€4â€ylamino)â€6â€chloropyrimidinâ€2â€ylthio)octanoic acid (HZ52) – a novel type of 5â€li inhibitor with favourable molecular pharmacology and efficacy in vivo. British Journal of Pharmacology, 2011, 164, 781-793.	ooxygenas 5.4	6 6
303	Strategy for catch and release of azide-tagged biomolecules utilizing a photolabile strained alkyne construct. Organic and Biomolecular Chemistry, 2012, 10, 4496.	2.8	6
304	Caulerpenyne and Related Bisâ€enol Esters Are Novelâ€Type Inhibitors of Human 5â€Lipoxygenase. ChemMedChem, 2014, 9, 1655-1659.	3.2	6
305	Regulation of inflammatory pathways by an a-tocopherol long-chain metabolite and a d-tocotrienol-related natural compound Free Radical Biology and Medicine, 2014, 75, S48.	2.9	6
306	SAR-studies of γ-secretase modulators with PPARγ-agonistic and 5-lipoxygenase-inhibitory activity for Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 841-846.	2.2	6

#	Article	IF	CITATIONS
307	Bioactivity and Mode of Action of Bacterial Tetramic Acids. ACS Chemical Biology, 2019, 14, 1693-1697.	3.4	6
308	Design and synthesis of a novel mPGES-1 lead inhibitor guided by 3D-QSAR CoMFA. Journal of Molecular Structure, 2019, 1196, 844-850.	3.6	6
309	An Alternative Pathway to Leukotriene B ₄ Enantiomers Involving a 1,8-Diol-Forming Reaction of an Algal Oxylipin. Organic Letters, 2019, 21, 4667-4670.	4.6	6
310	Identification of 2-(thiophen-2-yl)acetic Acid-Based Lead Compound for mPGES-1 Inhibition. Frontiers in Chemistry, 2021, 9, 676631.	3.6	6
311	Simple heteroaryl modifications in the 4,5-diarylisoxazol-3-carboxylic acid scaffold favorably modulates the activity as dual mPGES-1/5-LO inhibitors with in vivo efficacy. Bioorganic Chemistry, 2021, 112, 104861.	4.1	6
312	A Selective Modulator of Peroxisome Proliferator-Activated Receptor Î ³ with an Unprecedented Binding Mode. Journal of Medicinal Chemistry, 2020, 63, 4555-4561.	6.4	5
313	Sex Hormone–Dependent Lipid Mediator Formation in Male and Female Mice During Peritonitis. Frontiers in Pharmacology, 2021, 12, 818544.	3.5	5
314	Hypertonicity suppresses ionophore-induced product formation and translocation of 5-lipoxygenase in human leukocytes. Journal of Leukocyte Biology, 2002, 71, 477-86.	3.3	5
315	Hyperforin and Myrtucommulone Derivatives Act as Natural Modulators of Wnt/β-Catenin Signaling in HCT116 Colon Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 2984.	4.1	5
316	Monocyte-derived soluble protein confers 5-lipoxygenase activity Ca2+-dependent. Biochemical and Biophysical Research Communications, 2002, 295, 985-991.	2.1	4
317	Separation of 5-Lipoxygenase Metabolites Using Cyclodextrin-Modified Microemulsion Electrokinetic Chromatography and Head Column Field-Amplified Sample Stacking. Chromatographia, 2013, 76, 1187-1192.	1.3	4
318	15â€Hydroperoxyâ€PGE ₂ : Intermediate in Mammalian and Algal Prostaglandin Biosynthesis. Angewandte Chemie - International Edition, 2019, 58, 17641-17645.	13.8	4
319	Lipid Mediator Profiles Predict Response to Therapy with an Oral Frankincense Extract in Relapsing-Remitting Multiple Sclerosis. Scientific Reports, 2020, 10, 8776.	3.3	4
320	Discovery of N-amido-phenylsulfonamide derivatives as novel microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 127992.	2.2	4
321	Defined Structure-Activity Relationships of Boswellic Acids Determine Modulation of Ca2+ Mobilization and Aggregation of Human Platelets by Boswellia serrata Extracts. Planta Medica, 2017, 83, 1020-1027.	1.3	3
322	Drug-Mediated Intracellular Donation of Nitric Oxide Potently Inhibits 5-Lipoxygenase: A Possible Key to Future Antileukotriene Therapy. Antioxidants and Redox Signaling, 2018, 28, 1265-1285.	5.4	3
323	A 5‑lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 543-551.	2.4	3
324	Mycobacterium tuberculosis-Induced Upregulation of the COX-2/mPGES-1 Pathway in Human Macrophages Is Abrogated by Sulfasalazine. Frontiers in Immunology, 2022, 13, .	4.8	3

0

#	Article	IF	CITATIONS
325	Modulation of Inflammation-Related Lipid Mediator Pathways by Celastrol During Human Macrophage Polarization. Journal of Inflammation Research, 0, Volume 15, 3285-3304.	3.5	3
326	Repositioning of Quinazolinedione-Based Compounds on Soluble Epoxide Hydrolase (sEH) through 3D Structure-Based Pharmacophore Model-Driven Investigation. Molecules, 2022, 27, 3866.	3.8	3
327	A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum. PLoS ONE, 2015, 10, e0140927.	2.5	2
328	Differential role of vacuolar (H+)-ATPase in the expression and activity of cyclooxygenase-2 in human monocytes. Biochemical Pharmacology, 2020, 175, 113858.	4.4	2
329	12-Oxo-10-glutathionyl-5,8,14-eicosatrienoic acid (TOG10), a novel glutathione-containing eicosanoid generated via the 12-lipoxygenase pathway in human platelets. Prostaglandins and Other Lipid Mediators, 2021, 152, 106480.	1.9	2
330	Incidence and severity of G6PI-induced arthritis are not increased in genetically distinct mouse strains upon aging. Arthritis Research and Therapy, 2021, 23, 222.	3.5	2
331	In Silico, In Vitro, and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway. Biomolecules, 2022, 12, 99.	4.0	2
332	Plectranthus zeylanicus: A Rich Source of Secondary Metabolites with Antimicrobial, Disinfectant and Anti-Inflammatory Activities. Pharmaceuticals, 2022, 15, 436.	3.8	2
333	14,17,18-Trihydroxy-Eicosatetraenoic Acid: A Novel Pro-Resolving Lipid Mediator from Marine Microalgae. ACS Pharmacology and Translational Science, 2021, 4, 1188-1194.	4.9	1
334	Encapsulation of the anti-inflammatory dual FLAP/sEH inhibitor diflapolin improves the efficiency in human whole blood. Journal of Pharmaceutical Sciences, 2021, , .	3.3	1
335	Thiazolidin-4-one-based compounds interfere with the eicosanoid biosynthesis pathways by mPGES-1/sEH/5-LO multi-target inhibition. European Journal of Medicinal Chemistry Reports, 2022, , 100046.	1.4	1
336	Synbiotic Compositions of Bacillus megaterium and Polyunsaturated Fatty Acid Salt Enable Self-Sufficient Production of Specialized Pro-Resolving Mediators. Nutrients, 2022, 14, 2265.	4.1	1
337	(4R)-4-Hydroxy-1-[(2S)-2-hydroxydodecyl]-L-proline monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5138-o5140.	0.2	Ο
338	Garcinia kola – African ethno medication with anti-atherosclerotic effects?. Free Radical Biology and Medicine, 2017, 108, S33.	2.9	0
339	15â€Hydroperoxyâ€₽GE2: Intermediate in Mammalian and Algal Prostaglandin Biosynthesis. Angewandte Chemie, 2019, 131, 17805-17809.	2.0	0

340 5-Lipoxygenase. , 2016, , 7-29.