
## Yuxin Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820045/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Sugar Transporter Takes Up both Hexose and Sucrose for Sorbitol-Modulated In Vitro Pollen Tube<br>Growth in Apple. Plant Cell, 2020, 32, 449-469.                                                                                        | 6.6  | 49        |
| 2  | Glucosylation by the Legionella Effector SetA Promotes the Nuclear Localization of the Transcription<br>Factor TFEB. IScience, 2020, 23, 101300.                                                                                           | 4.1  | 18        |
| 3  | Structural basis of peptidoglycan endopeptidase regulation. Proceedings of the National Academy of<br>Sciences of the United States of America, 2020, 117, 11692-11702.                                                                    | 7.1  | 27        |
| 4  | In vitro Glutamylation Inhibition of Ubiquitin Modification and Phosphoribosyl-Ubiquitin Ligation<br>Mediated by Legionella pneumophila Effectors. Bio-protocol, 2020, 10, e3811.                                                          | 0.4  | 0         |
| 5  | Radioactive Assay of in vitro Glutamylation Activity of the Legionella pneumophila Effector Protein<br>SidJ. Bio-protocol, 2020, 10, e3770.                                                                                                | 0.4  | 0         |
| 6  | Glutamylation of Bacterial Ubiquitin Ligases by a Legionella Pseudokinase. Trends in Microbiology,<br>2019, 27, 967-969.                                                                                                                   | 7.7  | 11        |
| 7  | Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain–containing<br><i>Legionella</i> effectors. Proceedings of the National Academy of Sciences of the United States of<br>America, 2019, 116, 23518-23526. | 7.1  | 64        |
| 8  | Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ. ELife, 2019, 8, .                                                                                                                             | 6.0  | 56        |
| 9  | Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Nature, 2018, 557, 729-733.                                                                                                                           | 27.8 | 75        |
| 10 | Insights into the ubiquitin transfer cascade catalyzed by the Legionella effector SidC. ELife, 2018, 7, .                                                                                                                                  | 6.0  | 12        |
| 11 | Reduction of lattice disorder in protein crystals by high-pressure cryocooling. Journal of Applied<br>Crystallography, 2016, 49, 149-157.                                                                                                  | 4.5  | 22        |
| 12 | Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC.<br>Current Genetics, 2016, 62, 105-108.                                                                                               | 1.7  | 4         |
| 13 | Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain<br>Essential for Its Targeting to the Bacterial Phagosome. PLoS Pathogens, 2015, 11, e1004965.                                          | 4.7  | 81        |
| 14 | The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis.<br>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 698-710.                                           | 2.4  | 70        |
| 15 | Spatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling.<br>Journal of Cell Biology, 2015, 209, 97-110.                                                                                           | 5.2  | 64        |
| 16 | Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. ELife, 2015, 4, .                                                                                                                              | 6.0  | 127       |
| 17 | Crystal structure of Legionella pneumophila dephospho-CoA kinase reveals a non-canonical conformation of P-loop. Journal of Structural Biology, 2014, 188, 233-239.                                                                        | 2.8  | 2         |
| 18 | The <i>Legionella</i> effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10538-10543.   | 7.1  | 98        |

Υυχιν Μαο

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease. Frontiers in Biology, 2013, 8, 395-407.                                                                              | 0.7  | 22        |
| 20 | ldentification and Structural Characterization of a Legionella Phosphoinositide Phosphatase*.<br>Journal of Biological Chemistry, 2013, 288, 24518-24527.                                                       | 3.4  | 69        |
| 21 | A Conserved Structural Determinant Located at the Interdomain Region of Mammalian IRE1α. FASEB<br>Journal, 2013, 27, 794.18.                                                                                    | 0.5  | 0         |
| 22 | Structural basis for substrate recognition by a unique <i>Legionella</i> phosphoinositide phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13567-13572. | 7.1  | 107       |
| 23 | Allosteric Activation of the Phosphoinositide Phosphatase Sac1 by Anionic Phospholipids.<br>Biochemistry, 2012, 51, 3170-3177.                                                                                  | 2.5  | 48        |
| 24 | Osh Proteins Regulate Phosphoinositide Metabolism at ER-Plasma Membrane Contact Sites. Cell, 2011,<br>144, 389-401.                                                                                             | 28.9 | 442       |
| 25 | A Conserved Structural Determinant Located at the Interdomain Region of Mammalian<br>Inositol-requiring Enzyme 1α. Journal of Biological Chemistry, 2011, 286, 30859-30866.                                     | 3.4  | 41        |
| 26 | Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO<br>Journal, 2010, 29, 1489-1498.                                                                          | 7.8  | 107       |
| 27 | A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO Journal, 2009, 28, 1831-1842.                                                                       | 7.8  | 96        |
| 28 | A Role of the Lowe Syndrome Protein OCRL in Early Steps of the Endocytic Pathway. Developmental<br>Cell, 2007, 13, 377-390.                                                                                     | 7.0  | 258       |
| 29 | Structure of the bifunctional and Golgi-associated formiminotransferase cyclodeaminase octamer.<br>EMBO Journal, 2004, 23, 2963-2971.                                                                           | 7.8  | 26        |
| 30 | Crystal structural studies of destripeptide (B28-B30) insulin. Science in China Series B: Chemistry, 2000, 43, 178-186.                                                                                         | 0.8  | 2         |
| 31 | Crystal Structure of the VHS and FYVE Tandem Domains of Hrs, a Protein Involved in Membrane<br>Trafficking and Signal Transduction. Cell, 2000, 100, 447-456.                                                   | 28.9 | 175       |
| 32 | Adaptor linked K63 di-ubiquitin activates Nedd4/Rsp5 E3 ligase. ELife, 0, 11, .                                                                                                                                 | 6.0  | 3         |