## **Ralph Scully**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4819980/publications.pdf Version: 2024-02-01



PAIDH SCHUV

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Association of BRCA1 with Rad51 in Mitotic and Meiotic Cells. Cell, 1997, 88, 265-275.                                                                                                                    | 28.9 | 1,392     |
| 2  | Involvement of the TIP60 Histone Acetylase Complex in DNA Repair and Apoptosis. Cell, 2000, 102, 463-473.                                                                                                 | 28.9 | 936       |
| 3  | Dynamic Changes of BRCA1 Subnuclear Location and Phosphorylation State Are Initiated by DNA<br>Damage. Cell, 1997, 90, 425-435.                                                                           | 28.9 | 856       |
| 4  | DNA double-strand break repair-pathway choice in somatic mammalian cells. Nature Reviews<br>Molecular Cell Biology, 2019, 20, 698-714.                                                                    | 37.0 | 839       |
| 5  | SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging. Cell, 2008, 135, 907-918.                                                                           | 28.9 | 756       |
| 6  | In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature, 2000, 408, 429-432.                                                                                                              | 27.8 | 617       |
| 7  | Stable Interaction between the Products of the BRCA1 and BRCA2 Tumor Suppressor Genes in Mitotic and Meiotic Cells. Molecular Cell, 1998, 2, 317-328.                                                     | 9.7  | 545       |
| 8  | Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8173-8178. | 7.1  | 492       |
| 9  | Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.<br>Nature Genetics, 2020, 52, 331-341.                                                                     | 21.4 | 431       |
| 10 | Combining a PI3K Inhibitor with a PARP Inhibitor Provides an Effective Therapy for BRCA1-Related Breast<br>Cancer. Cancer Discovery, 2012, 2, 1048-1063.                                                  | 9.4  | 384       |
| 11 | Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nature<br>Genetics, 1999, 21, 236-240.                                                                           | 21.4 | 383       |
| 12 | Genetic Analysis of BRCA1 Function in a Defined Tumor Cell Line. Molecular Cell, 1999, 4, 1093-1099.                                                                                                      | 9.7  | 332       |
| 13 | Mechanisms of double-strand break repair in somatic mammalian cells. Biochemical Journal, 2009, 423, 157-168.                                                                                             | 3.7  | 319       |
| 14 | Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nature Structural and Molecular Biology, 2009, 16, 814-818.                                                               | 8.2  | 293       |
| 15 | RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes and Development, 2011, 25, 685-700.                                                    | 5.9  | 206       |
| 16 | Distinct Roles of Chromatin-Associated Proteins MDC1 and 53BP1 in Mammalian Double-Strand Break<br>Repair. Molecular Cell, 2007, 28, 1045-1057.                                                           | 9.7  | 195       |
| 17 | Double strand break repair functions of histone H2AX. Mutation Research - Fundamental and<br>Molecular Mechanisms of Mutagenesis, 2013, 750, 5-14.                                                        | 1.0  | 193       |
| 18 | Control of Sister Chromatid Recombination by Histone H2AX. Molecular Cell, 2004, 16, 1017-1025.                                                                                                           | 9.7  | 191       |

RALPH SCULLY

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanisms in CD4 antibody-mediated transplantation tolerance: kinetics of induction, antigen dependency and role of regulatory T cells. European Journal of Immunology, 1994, 24, 2383-2392. | 2.9  | 163       |
| 20 | The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct<br>Gene Mutations. Cancer Cell, 2018, 34, 197-210.e5.                                      | 16.8 | 130       |
| 21 | Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a Target in <i>LKB1</i> -Mutant Lung Cancer. Cancer Discovery, 2013, 3, 870-879.                                 | 9.4  | 127       |
| 22 | PARP1-Driven Poly-ADP-Ribosylation Regulates BRCA1 Function in Homologous<br>Recombination–Mediated DNA Repair. Cancer Discovery, 2014, 4, 1430-1447.                                         | 9.4  | 125       |
| 23 | BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature, 2014, 510, 556-559.                                                                           | 27.8 | 122       |
| 24 | Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature, 2017, 551, 590-595.                                                                                                  | 27.8 | 118       |
| 25 | Active Localization of the Retinoblastoma Protein in Chromatin and Its Response to S Phase DNA<br>Damage. Molecular Cell, 2003, 12, 735-746.                                                  | 9.7  | 110       |
| 26 | BRCA1 Is Required for Postreplication Repair after UV-Induced DNA Damage. Molecular Cell, 2011, 44, 235-251.                                                                                  | 9.7  | 106       |
| 27 | RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks. Molecular Cell, 2015, 60, 280-293.                                                                       | 9.7  | 103       |
| 28 | The tandem duplicator phenotype as a distinct genomic configuration in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2373-82.          | 7.1  | 103       |
| 29 | p300 Interacts with the Nuclear Proto-Oncoprotein SYT as Part of the Active Control of Cell<br>Adhesion. Cell, 2000, 102, 839-848.                                                            | 28.9 | 92        |
| 30 | Molecular Functions of BRCA1 in the DNA Damage Response. Cancer Biology and Therapy, 2004, 3, 521-527.                                                                                        | 3.4  | 85        |
| 31 | Minding the gap: The underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA<br>Repair, 2007, 6, 1018-1031.                                                                | 2.8  | 85        |
| 32 | PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Research, 2014, 42, 5616-5632.                                      | 14.5 | 82        |
| 33 | Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4338-47.    | 7.1  | 76        |
| 34 | Role of BRCAgene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Research, 2000, 2, 324-30.                                                                            | 5.0  | 70        |
| 35 | DNA polymerase stalling, sister chromatid recombination and the BRCA genes. Oncogene, 2000, 19, 6176-6183.                                                                                    | 5.9  | 66        |
| 36 | Molecular analysis of sister chromatid recombination in mammalian cells. DNA Repair, 2005, 4, 149-161.                                                                                        | 2.8  | 59        |

RALPH SCULLY

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Akt-Mediated Phosphorylation of XLF Impairs Non-Homologous End-Joining DNA Repair. Molecular Cell, 2015, 57, 648-661.                                                                                     | 9.7  | 59        |
| 38 | Differential Regulation of Short- and Long-Tract Gene Conversion between Sister Chromatids by<br>Rad51C. Molecular and Cellular Biology, 2006, 26, 8075-8086.                                             | 2.3  | 56        |
| 39 | BRCA1 and CtIP suppress long-tract gene conversion between sister chromatids. Nature Communications, 2013, 4, 2404.                                                                                       | 12.8 | 56        |
| 40 | H2AX post-translational modifications in the ionizing radiation response and homologous recombination. Cell Cycle, 2010, 9, 3602-3610.                                                                    | 2.6  | 55        |
| 41 | ATM- and ATR-Mediated Phosphorylation of XRCC3 Regulates DNA Double-Strand Break-Induced Checkpoint Activation and Repair. Molecular and Cellular Biology, 2013, 33, 1830-1844.                           | 2.3  | 54        |
| 42 | Impact of Histone H4 Lysine 20 Methylation on 53BP1 Responses to Chromosomal Double Strand Breaks.<br>PLoS ONE, 2012, 7, e49211.                                                                          | 2.5  | 50        |
| 43 | XRCC2 and XRCC3 Regulate the Balance between Short- and Long-Tract Gene Conversions between Sister Chromatids. Molecular and Cellular Biology, 2009, 29, 4283-4294.                                       | 2.3  | 46        |
| 44 | Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement. Trends in Cancer, 2015, 1, 217-230.                                                                                    | 7.4  | 46        |
| 45 | Global increase in replication fork speed during a p57 <sup>KIP2</sup> -regulated erythroid cell fate switch. Science Advances, 2017, 3, e1700298.                                                        | 10.3 | 44        |
| 46 | Nek4 Regulates Entry into Replicative Senescence and the Response to DNA Damage in Human<br>Fibroblasts. Molecular and Cellular Biology, 2012, 32, 3963-3977.                                             | 2.3  | 42        |
| 47 | FANCM regulates repair pathway choice at stalled replication forks. Molecular Cell, 2021, 81, 2428-2444.e6.                                                                                               | 9.7  | 37        |
| 48 | A role for Th2 cytokines in the suppression of CD8+ T cell-mediated graft rejection. European Journal of Immunology, 1997, 27, 1663-1670.                                                                 | 2.9  | 35        |
| 49 | BRCA1 and BRCA2 in hereditary breast cancer. Biochimie, 2002, 84, 95-102.                                                                                                                                 | 2.6  | 34        |
| 50 | Variants of uncertain clinical significance in hereditary breast and ovarian cancer genes: best practices in functional analysis for clinical annotation. Journal of Medical Genetics, 2020, 57, 509-518. | 3.2  | 33        |
| 51 | DEK is required for homologous recombination repair of DNA breaks. Scientific Reports, 2017, 7, 44662.                                                                                                    | 3.3  | 30        |
| 52 | Cell Cycle-Dependent Induction of Homologous Recombination by a Tightly Regulated I-Scel Fusion<br>Protein. PLoS ONE, 2011, 6, e16501.                                                                    | 2.5  | 28        |
| 53 | 53BP1 Protects against CtIP-Dependent Capture of Ectopic Chromosomal Sequences at the Junction of Distant Double-Strand Breaks. PLoS Genetics, 2016, 12, e1006230.                                        | 3.5  | 27        |
| 54 | Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier. PLoS Genetics, 2018, 14, e1007486.                         | 3.5  | 24        |

RALPH SCULLY

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Inactivation of the Prolyl Isomerase Pin1 Sensitizes BRCA1-Proficient Breast Cancer to PARP Inhibition.<br>Cancer Research, 2020, 80, 3033-3045.                           | 0.9  | 23        |
| 56 | Lamin B1 sequesters 53BP1 to control its recruitment to DNA damage. Science Advances, 2021, 7, .                                                                           | 10.3 | 21        |
| 57 | Complex Breakpoints and Template Switching Associated with Non-canonical Termination of<br>Homologous Recombination in Mammalian Cells. PLoS Genetics, 2016, 12, e1006410. | 3.5  | 19        |
| 58 | LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair.<br>Nature Communications, 2015, 6, 8325.                                | 12.8 | 18        |
| 59 | In my end is my beginning: control of end resection and DSBR pathway â€~choice' by cyclin-dependent<br>kinases. Oncogene, 2005, 24, 2871-2876.                             | 5.9  | 17        |
| 60 | The Spindle-Assembly Checkpoint, Aneuploidy, and Gastrointestinal Cancer. New England Journal of<br>Medicine, 2010, 363, 2665-2666.                                        | 27.0 | 17        |
| 61 | The Protexin complex counters resection on stalled forks to promote homologous recombination and crosslink repair. Molecular Cell, 2021, 81, 4440-4456.e7.                 | 9.7  | 17        |
| 62 | Recombination and restart at blocked replication forks. Current Opinion in Genetics and Development, 2021, 71, 154-162.                                                    | 3.3  | 16        |
| 63 | Trex2 Enables Spontaneous Sister Chromatid Exchanges Without Facilitating DNA Double-Strand<br>Break Repair. Genetics, 2011, 188, 787-797.                                 | 2.9  | 15        |
| 64 | FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids. Nucleic Acids Research, 2017, 45, 8886-8900.                 | 14.5 | 15        |
| 65 | Interactions between BRCA Proteins and DNA Structure. Experimental Cell Research, 2001, 264, 67-73.                                                                        | 2.6  | 13        |
| 66 | Hijacking the DNA Damage Response to Enhance Viral Replication: Î <sup>3</sup> -Herpesvirus 68 orf36<br>Phosphorylates Histone H2AX. Molecular Cell, 2007, 27, 178-179.    | 9.7  | 13        |
| 67 | Spatial separation of replisome arrest sites influences homologous recombination quality at a Tus/Ter-mediated replication fork barrier. Cell Cycle, 2016, 15, 1812-1820.  | 2.6  | 8         |
| 68 | A histone code for DNA repair. Nature Reviews Molecular Cell Biology, 2010, 11, 164-164.                                                                                   | 37.0 | 7         |
| 69 | A protective role for BRCA2 at stalled replication forks. Breast Cancer Research, 2011, 13, 314.                                                                           | 5.0  | 7         |
| 70 | BRCA1 and BRCA2 in Breast Cancer Predisposition and Recombination Control. Journal of Mammary<br>Gland Biology and Neoplasia, 2004, 9, 237-246.                            | 2.7  | 6         |
| 71 | Measurement of Homologous Recombination at Stalled Mammalian Replication Forks. Methods in<br>Molecular Biology, 2021, 2153, 329-353.                                      | 0.9  | 5         |
| 72 | Hereditary Breast and Ovarian Cancer Genes. , 2003, 222, 041-057.                                                                                                          |      | 3         |

| #  | Article                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Epistatic Relationships in the BRCA1-BRCA2 Pathway. PLoS Genetics, 2011, 7, e1002183.              | 3.5 | 3         |
| 74 | DNA Polymerase Î,: Duct Tape and Zip Ties for a Fragile Genome. Molecular Cell, 2016, 63, 542-544. | 9.7 | 0         |