
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4818738/publications.pdf Version: 2024-02-01

ANNE FOHDUSSI

#	Article	IF	CITATIONS
1	Live-Imaging of Axonal Cargoes in Drosophila Brain Explants Using Confocal Microscopy. Methods in Molecular Biology, 2022, 2417, 19-28.	0.4	1
2	Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in Drosophila embryonic development. Cell, 2022, 185, 1308-1324.e23.	13.5	47
3	High-Resolution Live Imaging of Axonal RNP Granules in Drosophila Pupal Brain Explants. Methods in Molecular Biology, 2022, 2431, 451-462.	0.4	0
4	High-precision targeting workflow for volume electron microscopy. Journal of Cell Biology, 2021, 220, .	2.3	33
5	Molecular basis of mRNA transport by a kinesin-1–atypical tropomyosin complex. Genes and Development, 2021, 35, 976-991.	2.7	29
6	Validation and classification of RNA binding proteins identified by mRNA interactome capture. Rna, 2021, 27, 1173-1185.	1.6	11
7	Transcript specific mRNP capture from Drosophila egg-chambers for proteomic analysis. Methods, 2020, 178, 83-88.	1.9	3
8	The Transcriptome-wide Landscape and Modalities of EJC Binding in Adult Drosophila. Cell Reports, 2019, 28, 1219-1236.e11.	2.9	15
9	Nuclear Pores Assemble from Nucleoporin Condensates During Oogenesis. Cell, 2019, 179, 671-686.e17.	13.5	87
10	Staufen2-mediated RNA recognition and localization requires combinatorial action of multiple domains. Nature Communications, 2019, 10, 1659.	5.8	18
11	Germ Cell Lineage Homeostasis in <i>Drosophila</i> Requires the Vasa RNA Helicase. Genetics, 2019, 213, 911-922.	1.2	14
12	Quantitative mRNA Imaging with Dual Channel qFIT Probes to Monitor Distribution and Degree of Hybridization. ACS Chemical Biology, 2018, 13, 742-749.	1.6	15
13	In Vivo Visualization and Function Probing of Transport mRNPs Using Injected FIT Probes. Methods in Molecular Biology, 2018, 1649, 273-287.	0.4	0
14	Terminal Deoxynucleotidyl Transferase Mediated Production of Labeled Probes for Single-molecule FISH or RNA Capture. Bio-protocol, 2018, 8, e2750.	0.2	14
15	Transposon silencing in the <i>Drosophila</i> female germline is essential for genome stability in progeny embryos. Life Science Alliance, 2018, 1, e201800179.	1.3	20
16	The LOTUS domain is a conserved DEAD-box RNA helicase regulator essential for the recruitment of Vasa to the germ plasm and nuage. Genes and Development, 2017, 31, 939-952.	2.7	61
17	An <scp>RNA</scp> â€binding atypical tropomyosin recruits kinesinâ€1 dynamically to <i>oskar </i> <scp>mRNP</scp> s. EMBO Journal, 2017, 36, 319-333.	3.5	60
18	RNA localization feeds translation. Science, 2017, 357, 1235-1236.	6.0	3

#	Article	IF	CITATIONS
19	Assembly and transport of oskar mRNPs in the Drosophila oocyte. Mechanisms of Development, 2017, 145, S5.	1.7	0
20	Enzymatic production of single-molecule FISH and RNA capture probes. Rna, 2017, 23, 1582-1591.	1.6	122
21	Ex vivo Ooplasmic Extract from Developing Drosophila Oocytes for Quantitative TIRF Microscopy Analysis. Bio-protocol, 2017, 7, .	0.2	8
22	Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nature Communications, 2016, 7, 12128.	5.8	134
23	CncRNAs: RNAs with both coding and non-coding roles in development. Development (Cambridge), 2016, 143, 1234-1241.	1.2	48
24	LNA-enhanced DNA FIT-probes for multicolour RNA imaging. Chemical Science, 2016, 7, 128-135.	3.7	64
25	Strength in numbers: quantitative singleâ€molecule <scp>RNA</scp> detection assays. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 135-150.	5.9	52
26	Live imaging of axonal transport in Drosophila pupal brain explants. Nature Protocols, 2015, 10, 574-584.	5.5	21
27	The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities. Cell Reports, 2015, 12, 587-598.	2.9	76
28	An RNA biosensor for imaging the first round of translation from single cells to living animals. Science, 2015, 347, 1367-1671.	6.0	238
29	<i>oskar</i> RNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction. Rna, 2015, 21, 1096-1109.	1.6	44
30	The structure of the SOLE element of <i>>oskar</i> > mRNA. Rna, 2015, 21, 1444-1453.	1.6	20
31	Klar ensures thermal robustness of <i>oskar</i> localization by restraining RNP motility. Journal of Cell Biology, 2014, 206, 199-215.	2.3	27
32	A stem–loop structure directs <i>oskar</i> mRNA to microtubule minus ends. Rna, 2014, 20, 429-439.	1.6	62
33	The EJC Binding and Dissociating Activity of PYM Is Regulated in Drosophila. PLoS Genetics, 2014, 10, e1004455.	1.5	23
34	Imp Promotes Axonal Remodeling by Regulating profilin mRNA during Brain Development. Current Biology, 2014, 24, 793-800.	1.8	58
35	Brightness through Local Constraint—LNAâ€Enhanced FIT Hybridization Probes for In Vivo Ribonucleotide Particle Tracking. Angewandte Chemie - International Edition, 2014, 53, 11370-11375.	7.2	55
36	RNA Clamping by Vasa Assembles a piRNA Amplifier Complex on Transposon Transcripts. Cell, 2014, 157, 1698-1711.	13.5	208

#	Article	IF	CITATIONS
37	Considerations when investigating IncRNA function in vivo. ELife, 2014, 3, e03058.	2.8	309
38	A Cdc42-regulated actin cytoskeleton mediates <i>Drosophila</i> oocyte polarization. Development (Cambridge), 2013, 140, 362-371.	1.2	26
39	A single Drosophila embryo extract for the study of mitosis ex vivo. Nature Protocols, 2013, 8, 310-324.	5.5	16
40	Brightness Enhanced DNA FIT-Probes for Wash-Free RNA Imaging in Tissue. Journal of the American Chemical Society, 2013, 135, 19025-19032.	6.6	103
41	Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nature Structural and Molecular Biology, 2012, 19, 441-449.	3.6	109
42	Aster migration determines the length scale of nuclear separation in the <i>Drosophila</i> syncytial embryo. Journal of Cell Biology, 2012, 197, 887-895.	2.3	88
43	An Intracellular Transmission Control Protocol: assembly and transport of ribonucleoprotein complexes. Current Opinion in Cell Biology, 2012, 24, 202-210.	2.6	43
44	Dimerization of <i>oskar</i> 3′ UTRs promotes hitchhiking for RNA localization in the <i>Drosophila</i> oocyte. Rna, 2011, 17, 2049-2057.	1.6	79
45	Drosophila Ge-1 Promotes P Body Formation and oskar mRNA Localization. PLoS ONE, 2011, 6, e20612.	1.1	27
46	<i>Drosophila</i> PTB promotes formation of high-order RNP particles and represses <i>oskar</i> translation. Genes and Development, 2009, 23, 195-207.	2.7	108
47	The actin-binding protein Lasp promotes Oskar accumulation at the posterior pole of the <i>Drosophila </i> embryo. Development (Cambridge), 2009, 136, 95-105.	1.2	40
48	Myosin-V Regulates oskar mRNA Localization in the Drosophila Oocyte. Current Biology, 2009, 19, 1058-1063.	1.8	84
49	mRNA Localization: Gene Expression in the Spatial Dimension. Cell, 2009, 136, 719-730.	13.5	937
50	Translational control of localized mRNAs: restricting protein synthesis in space and time. Nature Reviews Molecular Cell Biology, 2008, 9, 971-980.	16.1	324
51	Drosophila Ensconsin Promotes Productive Recruitment of Kinesin-1 to Microtubules. Developmental Cell, 2008, 15, 866-876.	3.1	91
52	oskar RNP assembly for coordinated transport and translation control. FASEB Journal, 2008, 22, 406.2.	0.2	0
53	The Ig cell adhesion molecule Basigin controls compartmentalization and vesicle release at Drosophila melanogaster synapses. Journal of Cell Biology, 2007, 177, 843-855.	2.3	43
54	Stimulation of Endocytosis and Actin Dynamics by Oskar Polarizes the Drosophila Oocyte. Developmental Cell, 2007, 12, 543-555.	3.1	82

#	Article	IF	CITATIONS
55	Rab6 mediates membrane organization and determinant localization during Drosophila oogenesis. Development (Cambridge), 2007, 134, 1419-1430.	1.2	64
56	Arginine methyltransferase Capsulelen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila. Development (Cambridge), 2007, 134, 137-146.	1.2	74
57	Bruno Acts as a Dual Repressor of oskar Translation, Promoting mRNA Oligomerization and Formation of Silencing Particles. Cell, 2006, 124, 521-533.	13.5	200
58	A translation-independent role of oskar RNA in early Drosophila oogenesis. Development (Cambridge), 2006, 133, 2827-2833.	1.2	156
59	The Drosophila PAR-1 Spacer Domain Is Required for Lateral Membrane Association and for Polarization of Follicular Epithelial Cells. Current Biology, 2005, 15, 255-261.	1.8	40
60	Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation. PLoS Genetics, 2005, 1, e55.	1.5	47
61	PKA-R1 spatially restricts Oskar expression for Drosophilaembryonic patterning. Development (Cambridge), 2004, 131, 1401-1410.	1.2	16
62	Par-1 regulates bicoid mRNA localisation by phosphorylating Exuperantia. Development (Cambridge), 2004, 131, 5897-5907.	1.2	29
63	Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature, 2004, 428, 959-963.	13.7	307
64	Drosophila Development: RNA Interference ab ovo. Current Biology, 2004, 14, R428-R430.	1.8	6
65	Hrp48, a Drosophila hnRNPA/B Homolog, Binds and Regulates Translation of oskar mRNA. Developmental Cell, 2004, 6, 637-648.	3.1	112
66	Seeing Is Believing. Cell, 2004, 116, 143-152.	13.5	164
67	Bruno regulates gurken during Drosophila oogenesis. Mechanisms of Development, 2003, 120, 289-297.	1.7	69
68	Drosophila Perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mechanisms of Development, 2003, 120, 1071-1081.	1.7	130
69	Orb and a long poly(A) tail are required for efficientoskartranslation at the posterior pole of theDrosophilaoocyte. Development (Cambridge), 2003, 130, 835-843.	1.2	105
70	Par-1 regulates stability of the posterior determinant Oskar by phosphorylation. Nature Cell Biology, 2002, 4, 337-342.	4.6	66
71	The Fusome and Microtubules Enrich Par-1 in the Oocyte, Where It Effects Polarization in Conjunction with Par-3, BicD, Egl, and Dynein. Current Biology, 2002, 12, 1524-1528.	1.8	54
72	A germline-specific gap junction protein required for survival of differentiating early germ cells. Development (Cambridge), 2002, 129, 2529-2539.	1.2	172

#	Article	IF	CITATIONS
73	Oskar anchoring restricts pole plasm formation to the posterior of the <i>Drosophila</i> oocyte. Development (Cambridge), 2002, 129, 3705-3714.	1.2	125
74	Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development (Cambridge), 2002, 129, 3705-14.	1.2	63
75	Axis formation during Drosophila oogenesis. Current Opinion in Genetics and Development, 2001, 11, 374-383.	1.5	253
76	Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Current Biology, 2001, 11, 1666-1674.	1.8	206
77	A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nature Cell Biology, 2000, 2, 458-460.	4.6	157
78	Tribbles Coordinates Mitosis and Morphogenesis in Drosophila by Regulating String/CDC25 Proteolysis. Cell, 2000, 101, 511-522.	13.5	358
79	Relief of gene repression by Torso RTK signaling: role of <i>capicua</i> in <i>Drosophila</i> terminal and dorsoventral patterning. Genes and Development, 2000, 14, 224-231.	2.7	209
80	The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature, 1997, 385, 548-552.	13.7	180
81	Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Current Biology, 1997, 7, 326-337.	1.8	157
82	mRNA localization and the cytoskeleton. Seminars in Cell and Developmental Biology, 1996, 7, 357-365.	2.3	101
83	Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature, 1995, 377, 524-527.	13.7	213
84	Germ Plasm Formation and Germ Cell Determination in <i>Drosophila</i> . Novartis Foundation Symposium, 1994, 182, 282-304.	1.2	22
85	Induction of germ cell formation by oskar. Nature, 1992, 358, 387-392.	13.7	598
86	oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell, 1991, 66, 37-50.	13.5	768
87	Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature, 1985, 313, 798-801.	13.7	358