
Winfried S Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4818588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomics of isolated sieve tubes from Nicotiana tabacum: sieve element–specific proteins reveal differentiation of the endomembrane system. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112755119.	7.1	7
2	Diversity of funnel plasmodesmata in angiosperms: the impact of geometry on plasmodesmal resistance. Plant Journal, 2022, 110, 707-719.	5.7	4
3	How Münch's adaptation of Pfeffer's circulating water flow became the pressure-flow theory, and the resulting problems — A historical perspective. Journal of Plant Physiology, 2022, 272, 153672.	3.5	1
4	Predatory suspension feeders: an unusual feeding mode switch in <i>Olivella columellaris</i> (Caenogastropoda: Olividae) and its possible ecological effects. Journal of Molluscan Studies, 2022, 88, .	1.2	0
5	Plasmodesmata and the problems with size: Interpreting the confusion. Journal of Plant Physiology, 2021, 257, 153341.	3.5	22
6	Feeding behaviour and the operculum inÂOlividae (Gastropoda): the case of Callianax biplicata (G. B.) Tj ETQq0 0	0, <u>rg</u> BT /O	verlock 10 T
7	Size-dependent locomotory performance creates a behaviorally mediated prey size refuge in the marine snail Olivella semistriata: a study in the natural habitat. Environmental Epigenetics, 2020, 66, 57-62.	1.8	3
8	Sieve elements rapidly develop â€~nacreous walls' following injury â^' a common wounding response?. Plant Journal, 2020, 102, 797-808.	5.7	7

9	The diffusive injection micropipette (DIMP). Journal of Plant Physiology, 2020, 244, 153060.	3.5	8
10	Aspartate Residues in a Forisome-Forming SEO Protein Are Critical for Protein Body Assembly and Ca2+ Responsiveness. Plant and Cell Physiology, 2020, 61, 1699-1710.	3.1	5
11	Sieve-element differentiation and phloem sap contamination. Current Opinion in Plant Biology, 2018, 43, 43-49.	7.1	22
12	Non-dispersive phloem-protein bodies (NPBs) of Populus trichocarpa consist of a SEOR protein and do not respond to cell wounding and Ca2+. PeerJ, 2018, 6, e4665.	2.0	10
13	Complexity of the prey spectrum of <i>Agaronia propatula</i> (Caenogastropoda: Olividae), a dominant predator in sandy beach ecosystems of Pacific Central America. PeerJ, 2018, 6, e4714.	2.0	9
14	What actually is the Münch hypothesis? A short history of assimilate transport by mass flow. Journal of Integrative Plant Biology, 2017, 59, 292-310.	8.5	34
15	Waders (Scolopacidae) surviving despite malaligned leg fractures in the wild: kinematics of bipedal locomotion. Avian Research, 2017, 8, .	1.2	3
16	Symplasmic mass flow and sieve tubes in algae and plants. Perspectives in Phycology, 2017, 4, 93-101.	1.9	1
17	Think outside the sieve element!. Plant, Cell and Environment, 2016, 39, 707-708.	5.7	4
18	<i>In situ</i> microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for	5.7	16

<i>In situ</i> microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?. Plant, Cell and Environment, 2016, 39, 1727-1736. 18

#	Article	IF	CITATIONS
19	The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates. Annals of Botany, 2016, 117, 599-606.	2.9	10
20	GIANTS AMONG MICROMORPHS: WERE CINCINNATIAN (ORDOVICIAN, KATIAN) SMALL SHELLY PHOSPHATIC FAUNAS DWARFED?. Palaios, 2016, 31, 55-70.	1.3	16
21	Opportunistic suspension feeding in the intertidal gastropod Olivella columellaris and its implications for the regulation of tidal migrations. Ciencias Marinas, 2016, 42, 289-294.	0.4	2
22	Cannibalism causes size-dependent intraspecific predation pressure but does not trigger autotomy in the intertidal gastropod <i>Agaronia propatula</i> . Journal of Molluscan Studies, 2015, 81, 388-396.	1.2	7
23	SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion. Journal of Experimental Botany, 2014, 65, 1879-1893.	4.8	60
24	The cannibalistic snail <i>Agaronia propatula</i> (Caenogastropoda, Mollusca) is reluctant to feed on autotomized â€tails' of conspecifics. Marine and Freshwater Behaviour and Physiology, 2014, 47, 285-290.	0.9	3
25	Long-distance translocation of photosynthates: a primer. Photosynthesis Research, 2013, 117, 189-196.	2.9	23
26	The behavioural and sensory ecology of Agaronia propatula (Caenogastropoda: Olividae), a swash-surfing predator on sandy beaches of the Panamic faunal province. Journal of Molluscan Studies, 2012, 78, 235-245.	1.2	13
27	Forisome performance in artificial sieve tubes. Plant, Cell and Environment, 2012, 35, 1419-1427.	5.7	41
28	What can we learn from confusing Olivella columellaris and O. semistriata (Olivellidae, Gastropoda), two key species in panamic sandy beach ecosystems?. Biota Neotropica, 2012, 12, 101-113.	1.0	9
29	Geometric Constraints and the Anatomical Interpretation of Twisted Plant Organ Phenotypes. Frontiers in Plant Science, 2011, 2, 62.	3.6	11
30	Autotomy of the posterior foot in Agaronia (Caenogastropoda: Olividae) occurs in animals that are fully withdrawn into their shells. Journal of Molluscan Studies, 2011, 77, 437-440.	1.2	10
31	Legume phylogeny and the evolution of a unique contractile apparatus that regulates phloem transport. American Journal of Botany, 2010, 97, 797-808.	1.7	28
32	Münch, morphology, microfluidics - our structural problem with the phloem. Plant, Cell and Environment, 2010, 33, no-no.	5.7	91
33	Sexual size dimorphism is the most consistent explanation for the body size spectrum of <i>Confuciusornis sanctus</i> . Biology Letters, 2010, 6, 531-532.	2.3	15
34	Life history, sexual dimorphism and â€~ornamental' feathers in the mesozoic bird <i>Confuciusornis sanctus</i> . Biology Letters, 2009, 5, 817-820.	2.3	26
35	My embarrassment at not knowing Heinich. Journal of Plant Physiology, 2009, 166, 1713-1716.	3.5	0
36	Anisotropic contraction in forisomes: Simple models won't fit. Cytoskeleton, 2008, 65, 368-378.	4.4	19

#	Article	IF	CITATIONS
37	GFP Tagging of Sieve Element Occlusion (SEO) Proteins Results in Green Fluorescent Forisomes. Plant and Cell Physiology, 2008, 49, 1699-1710.	3.1	76
38	Tailed Forisomes of Canavalia gladiata: A New Model to Study Ca2+-driven Protein Contractility. Annals of Botany, 2007, 100, 101-109.	2.9	31
39	Research note: Reversible birefringence suggests a role for molecular self-assembly in forisome contractility. Functional Plant Biology, 2007, 34, 302.	2.1	14
40	Tailor-made composite functions as tools in model choice: the case of sigmoidal vs bi-linear growth profiles. Plant Methods, 2006, 2, 11.	4.3	25
41	Prospective energy densities in the forisome, a new smart material. Materials Science and Engineering C, 2006, 26, 104-112.	7.3	24
42	The geometry of the forisome-sieve element-sieve plate complex in the phloem of Vicia faba L. leaflets. Journal of Experimental Botany, 2006, 57, 3091-3098.	4.8	36
43	Forisome based biomimetic smart materials. Smart Structures and Systems, 2006, 2, 225-235.	1.9	17
44	Forisome as biomimetic smart materials. , 2005, 5765, 97.		2
45	Growth rate gradients and extracellular pH in roots: how to control an explosion. New Phytologist, 2004, 162, 571-574.	7.3	11
46	Biomimetic actuators: where technology and cell biology merge. Cellular and Molecular Life Sciences, 2004, 61, 2497-2509.	5.4	51
47	Forisomes, a novel type of Ca2+-dependent contractile protein motor. Cytoskeleton, 2004, 58, 137-142.	4.4	47
48	Separate achievements of the Humboldt brothers. Nature, 2003, 423, 480-480.	27.8	2
49	ATP-independent contractile proteins from plants. Nature Materials, 2003, 2, 600-603.	27.5	143
50	The Biophysics of Leaf Growth in Salt-Stressed Barley. A Study at the Cell Level. Plant Physiology, 2002, 129, 374-388.	4.8	180
51	A tale of a traveling transcription factor. Trends in Cell Biology, 2002, 12, 10.	7.9	0
52	The lipid origin of cellulose. Trends in Cell Biology, 2002, 12, 159.	7.9	2
53	Keep them moving!. Trends in Cell Biology, 2002, 12, 410.	7.9	0
54	Big variety in small RNAs. Trends in Cell Biology, 2002, 12, 547.	7.9	0

#	Article	IF	CITATIONS
55	Looking at a Renegade's Predecessors. Science, 2002, 296, 1237-1237.	12.6	0
56	Record-density genome enclosed by multiple membranes. Trends in Cell Biology, 2001, 11, 282.	7.9	0
57	Some don't like it hot. Trends in Cell Biology, 2001, 11, 363.	7.9	0
58	Reversible Calcium-Regulated Stopcocks in Legume Sieve Tubes [W]. Plant Cell, 2001, 13, 1221-1230.	6.6	198
59	Does Growth Correlate with Turgor-Induced Elastic Strain in Stems? A Re-Evaluation of de Vries' Classical Experiments. Plant Physiology, 2001, 125, 2173-2179.	4.8	17
60	Offside researchers score an own goal. Nature, 2000, 405, 508-508.	27.8	0
61	What makes plants different? Principles of extracellular matrix function in â€~soft' plant tissues. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2000, 125, 151-167.	1.8	36
62	The Mechanic State of "Inner Tissue―in the Growing Zone of Sunflower Hypocotyls and the Regulation of Its Growth Rate Following Excision. Plant Physiology, 2000, 123, 605-612.	4.8	35
63	The Correlation of Profiles of Surface pH and Elongation Growth in Maize Roots. Plant Physiology, 1999, 121, 905-912.	4.8	79
64	XET-related genes and growth kinematics in barley leaves. Plant, Cell and Environment, 1999, 22, 331-332.	5.7	6
65	The temporal correlation of changes in apoplast pH and growth rate in maize coleoptile segments. Functional Plant Biology, 1998, 25, 21.	2.1	21
66	IAA breakdown and its effect on auxin-induced cell wall acidification in maize coleoptile segments. Physiologia Plantarum, 1997, 100, 415-422.	5.2	0
67	Is anything independent of selection?. Trends in Ecology and Evolution, 1997, 12, 276.	8.7	1
68	The Determination of Relative Elemental Growth Rate Profiles from Segmental Growth Rates (A) Tj ETQq0 0 0 rg	BT /Overlo 4.8	ck 10 Tf 50 2
69	IAA breakdown and its effect on auxin-induced cell wall acidification in maize coleoptile segments. Physiologia Plantarum, 1997, 100, 415-422.	5.2	7
70	Wounding-induced cell wall pH shifts in coleoptile segments of various Poaceae. Biologia Plantarum, 1997, 39, 103-108.	1.9	4
71	A Root Model Used in Methodical Re-Evaluation of Regr-Profile Determination Techniques. , 1997, , 366-367.		0
72	The History of Tissue Tension. Annals of Botany, 1996, 77, 657-665.	2.9	48

#	Article	IF	CITATIONS
73	Pollination of the Crown ImperialFritillaria imperialis by Great TitsParus major. Journal Fur Ornithologie, 1995, 136, 207-212.	1.2	16
74	Auxin-induced H+-pump stimulation does not depend on the presence of epidermal cells in corn coleoptiles. Planta, 1992, 186, 313-6.	3.2	18
75	Control of Apoplast pH in Corn Coleoptile Segments. II: The Effects of Various Auxins and Auxin Analogues. Journal of Plant Physiology, 1991, 137, 691-696.	3.5	25
76	Control of Apoplast pH in Corn Coleoptile Segments. I: The Endogenous Regulation of Cell Wall pH. Journal of Plant Physiology, 1991, 137, 655-661.	3.5	38
77	The electrical response of maize to auxins. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1064, 199-204.	2.6	100
78	Biomimetic Proteinaceous Valves in Microfluidics Systems. , 0, 2005, .		0