
Monique S J Simmonds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4817457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protection of hair from damage induced by ultraviolet irradiation using tea (<i>Camellia sinensis</i>) extracts. Journal of Cosmetic Dermatology, 2022, 21, 2246-2254.	1.6	5
2	Inspired by vitamin A for antiâ€ageing: Searching for plantâ€derived functional retinoid analogues. Skin Health and Disease, 2021, 1, e36.	1.5	4
3	Identification and quantification of tricin present in medicinal herbs, plant foods and by-products using UPLC-QTOF-MS. Chemical Papers, 2021, 75, 4579.	2.2	4
4	Topical and nutricosmetic products for healthy hair and dermal antiaging using "dualâ€acting―(2 for 1) plantâ€based peptides, hormones, and cannabinoids. FASEB BioAdvances, 2021, 3, 601-610.	2.4	13
5	Pharmacodynamics of <scp><i>Aloe vera</i></scp> and acemannan in therapeutic applications for skin, digestion, and immunomodulation. Phytotherapy Research, 2021, 35, 6572-6584.	5.8	9
6	Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. Phytomedicine, 2021, 90, 153625.	5.3	19
7	Differences in diterpenoid diversity reveal new evidence for separating the genus <i>Coleus</i> from <i>Plectranthus</i> . Natural Product Reports, 2021, 38, 1720-1728.	10.3	9
8	Biodiversity and patents: Overview of plants and fungi covered by patents. Plants People Planet, 2020, 2, 546-556.	3.3	10
9	Protecting and sustainably using the world's plants and fungi. Plants People Planet, 2020, 2, 368-370.	3.3	5
10	A Natural Flavone Tricin from Grains Can Alleviate Tumor Growth and Lung Metastasis in Colorectal Tumor Mice. Molecules, 2020, 25, 3730.	3.8	19
11	International collaboration between collectionsâ€based institutes for halting biodiversity loss and unlocking the useful properties of plants and fungi. Plants People Planet, 2020, 2, 515-534.	3.3	25
12	Unlocking the properties of plants and fungi for sustainable development. Nature Plants, 2019, 5, 1100-1102.	9.3	32
13	Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chemistry, 2017, 220, 517-526.	8.2	55
14	Anti-oxidant, anti-inflammatory, analgesic and antipyretic activities of grapevine leaf extract (Vitis) Tj ETQq0 0 0 r Pharmacotherapy, 2016, 84, 1088-1098.	rgBT /Over 5.6	lock 10 Tf 50 60
15	Phenylethanoid glycosides in tepals of Magnolia salicifolia and their occurrence in flowers of Magnoliaceae. Phytochemistry, 2015, 117, 185-193.	2.9	20
16	Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera. BMC Evolutionary Biology, 2015, 15, 29.	3.2	79
17	Leaf traits influencing oviposition preference and larval performance of <i><scp>C</scp>ameraria ohridella</i> on native and novel host plants. Entomologia Experimentalis Et Applicata, 2014, 152, 157-164.	1.4	19
18	The role of phytochemicals as micronutrients in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 558-566.	2.5	110

MONIQUE S J SIMMONDS

#	Article	IF	CITATIONS
19	Naturally occurring aristolochic acid analogues and their toxicities. Natural Product Reports, 2014, 31, 676.	10.3	116
20	The quest for modernisation of traditional Chinese medicine. BMC Complementary and Alternative Medicine, 2013, 13, 132.	3.7	145
21	Is aristolochic acid nephropathy a widespread problem in developing countries?. Journal of Ethnopharmacology, 2013, 149, 235-244.	4.1	60
22	Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chemistry, 2013, 138, 1448-1453.	8.2	76
23	Oviposition patterns and larval damage by the invasive horseâ€chestnut leaf miner <i>Cameraria ohridella</i> on different species of <i>Aesculus</i> . Ecological Entomology, 2013, 38, 456-462.	2.2	26
24	Chemical Composition and Biological Activities of Polar Extracts and Essential Oil of Roseâ€scented Geranium, <i>Pelargonium graveolens</i> . Phytotherapy Research, 2013, 27, 1206-1213.	5.8	62
25	The Epidemiology, Diagnosis, and Management of Aristolochic Acid Nephropathy. Annals of Internal Medicine, 2013, 158, 469.	3.9	142
26	Good practice in reviewing and publishing studies on herbal medicine, with special emphasis on traditional Chinese medicine and Chinese materia medica. Journal of Ethnopharmacology, 2012, 140, 469-475.	4.1	180
27	Omic techniques in systems biology approaches to traditional Chinese medicine research: Present and future. Journal of Ethnopharmacology, 2012, 140, 535-544.	4.1	150
28	Leaf Chemistry and Foliage Avoidance by the Thrips Frankliniella occidentalis and Heliothrips haemorrhoidalis in Glasshouse Collections. Journal of Chemical Ecology, 2011, 37, 301-310.	1.8	5
29	Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis. Arthropod-Plant Interactions, 2011, 5, 219-225.	1.1	18
30	In vitro anti-fibrotic activities of herbal compounds and herbs. Nephrology Dialysis Transplantation, 2009, 24, 3033-3041.	0.7	85
31	Documented Utility and Biocultural Value of Aloe L. (Asphodelaceae): A Review. Economic Botany, 2009, 63, 167-178.	1.7	56
32	Flavonol tetraglycosides from fruits of Styphnolobium japonicum (Leguminosae) and the authentication of Fructus Sophorae and Flos Sophorae. Phytochemistry, 2009, 70, 785-794.	2.9	75
33	Distinguishing Chinese Star Anise from Japanese Star Anise Using Thermal Desorptionâ^'Gas Chromatographyâ^'Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2009, 57, 5783-5789.	5.2	50
34	Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2—A global assessment based on bibliographic sources. Journal of Ethnopharmacology, 2009, 125, 108-144.	4.1	195
35	Effects of Paecilomyces fumosoroseus and Encarsia formosa on the control of the greenhouse whitefly: preliminary assessment of a compatability study. BioControl, 2008, 53, 303-316.	2.0	34
36	Chemical constituents and antimicrobial activity of medicinal plants from Ghana: <i>Cassia sieberiana</i> , <i> Haematostaphis barteri</i> , <i>Mitragyna inermis</i> and <i>Pseudocedrela kotschyi</i> . Phytotherapy Research, 2008, 22, 1013-1016.	5.8	57

MONIQUE S J SIMMONDS

#	Article	IF	CITATIONS
37	Chemical characterisation of wild populations of Thymus from different climatic regions in southeast Spain. Biochemical Systematics and Ecology, 2008, 36, 117-133.	1.3	39
38	Therapeutic uses of Aloe L. (Asphodelaceae) in southern Africa. Journal of Ethnopharmacology, 2008, 119, 604-614.	4.1	94
39	Chromatographic behaviour of steroidal saponins studied by high-performance liquid chromatography–mass spectrometry. Journal of Chromatography A, 2007, 1148, 177-183.	3.7	72
40	Plectranthus: A review of ethnobotanical uses. Journal of Ethnopharmacology, 2006, 103, 1-24.	4.1	375
41	Data-directed scan sequence for the general assignment of C-glycosylflavone O-glycosides in plant extracts by liquid chromatography-ion trap mass spectrometry. Journal of Chromatography A, 2006, 1104, 123-131.	3.7	44
42	Insect-antifeedant and antibacterial activity of diterpenoids from species of Plectranthus. Phytochemistry, 2006, 67, 1818-1825.	2.9	48
43	Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, subfamily) Tj ETQq1 1 0.784	314 rgBT 1.3	Oygrlock IO
44	Ethnobotanical study of some Ghanaian anti-malarial plants. Journal of Ethnopharmacology, 2005, 99, 273-279.	4.1	226
45	Identification and Antioxidant Potential of Flavonoids and Low Molecular Weight Phenols in Olive Cultivar Chemlali Growing in Tunisia. Journal of Agricultural and Food Chemistry, 2005, 53, 236-241.	5.2	140
46	Metabolomic analysis of saponins in crude extracts ofQuillaja saponaria by liquid chromatography/mass spectrometry for product authentication. Rapid Communications in Mass Spectrometry, 2004, 18, 2859-2870.	1.5	50
47	Evaluation of the quality of sandalwood essential oils by gas chromatography–mass spectrometry. Journal of Chromatography A, 2004, 1028, 307-312.	3.7	106
48	Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics and Evolution, 2004, 31, 277-299.	2.7	120
49	Flavonoid glycosides and isoquinolinone alkaloids from Corydalis bungeana. Phytochemistry, 2004, 65, 3041-3047.	2.9	38
50	Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae. Journal of Chemical Ecology, 2003, 29, 811-821.	1.8	97
51	Leaf surface flavonoids in Iranian species of Nepeta (Lamiaceae) and some related genera. Biochemical Systematics and Ecology, 2003, 31, 587-600.	1.3	53
52	Rosmarinic acid. Phytochemistry, 2003, 62, 121-125.	2.9	1,051
53	Dihydroisocoumarins and a tetralone from Cytospora eucalypticola. Phytochemistry, 2003, 62, 779-782.	2.9	78
54	Insect antifeedant furanocoumarins from Tetradium daniellii. Phytochemistry, 2003, 63, 41-46.	2.9	67

MONIQUE S J SIMMONDS

#	Article	IF	CITATIONS
55	The chemotaxonomic significance of two bioactive caffeic acid esters, nepetoidins A and B, in the Lamiaceae. Phytochemistry, 2003, 64, 519-528.	2.9	75
56	Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry, 2003, 64, 21-30.	2.9	385
57	Use of doubly protonated molecules in the analysis of cathedulins in crude extracts of khat (Catha) Tj ETQq1 1 Spectrometry, 2003, 17, 1553-1564.	0.784314 1.5	rgBT /Overloc 44
58	Liquid chromatography/mass spectrometry of malonyl-ginsenosides in the authentication of ginseng. Rapid Communications in Mass Spectrometry, 2003, 17, 238-244.	1.5	79
59	Three new species of Nepeta (Lamiaceae) from Iran. Taxon, 2003, 52, 93-98.	0.7	40
60	Phylogenetic Relationships in Nepeta L. (Lamiaceae) and Related Genera Based on ITS Sequence Data. Taxon, 2003, 52, 21.	0.7	35
61	Flavone C-Glycosides from Viola yedoensis MAKINO. Chemical and Pharmaceutical Bulletin, 2003, 51, 1204-1207.	1.3	143
62	Aristolochic acid as a causative factor in a case of Chinese herbal nephropathy. Nephrology Dialysis Transplantation, 2002, 17, 524-525.	0.7	33
63	CitrusLimonoids and Their Semisynthetic Derivatives as Antifeedant Agents AgainstSpodoptera frugiperdaLarvae. A Structureâ^'Activity Relationship Studyâ€. Journal of Agricultural and Food Chemistry, 2002, 50, 6766-6774.	5.2	74
64	Indole and β-Carboline Alkaloids from Geissospermum sericeum. Journal of Natural Products, 2002, 65, 85-88.	3.0	57
65	Detecting aristolochic acids in herbal remedies by liquid chromatography/serial mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 585-590.	1.5	57
66	Wound healing activity of acylated iridoid glycosides fromScrophularia nodosa. Phytotherapy Research, 2002, 16, 33-35.	5.8	110
67	Flavonolignans from Hyparrhenia hirta. Phytochemistry, 2002, 60, 515-520.	2.9	56
68	Relationship between nutritional composition of plant species and infestation levels of thrips. Journal of Chemical Ecology, 2002, 28, 2399-2409.	1.8	45
69	Can larvae of the pod-borer, <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae), select between wild and cultivated pigeonpea <i>Cajanus</i> sp. (Fabaceae)?. Bulletin of Entomological Research, 2002, 92, 45-51.	1.0	40
70	Insect Antifeedant Activity of Three New Tetranortriterpenoids fromTrichiliapallida. Journal of Natural Products, 2001, 64, 1117-1120.	3.0	35
71	Importance of flavonoids in insect–plant interactions: feeding and oviposition. Phytochemistry, 2001, 56, 245-252.	2.9	210

Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera. , 2001, 27, 965-977.

96

#	Article	IF	CITATIONS
73	A comparison between chemical and molecular characters for the determination of phylogenetic relationships among plant families: An appreciation of Hegnauer's "Chemotaxonomie der Pflanzen― Biochemical Systematics and Ecology, 1999, 27, 369-393.	1.3	70
74	Isolation, Characterization, and Biological Activity of Naphthoquinones fromCalceolaria andinaL Journal of Agricultural and Food Chemistry, 1999, 47, 770-775.	5.2	55
75	Influence of Some Fatty Acids on Oviposition by the Bruchid Beetle, Callosobruchus maculatus. Journal of Chemical Ecology, 1998, 24, 1577-1593.	1.8	55
76	Actions of azadirachtin, a plant allelochemical, against insects. Pest Management Science, 1998, 54, 277-284.	0.4	120
77	Oviposition and chemosensory stimulation of the root flies <i>Delia radicum</i> and <i>D. floralis</i> in response to plants and leaf surface extracts from resistant and susceptible <i>Brassica</i> genotypes. Entomologia Experimentalis Et Applicata, 1996, 78, 61-75.	1.4	44
78	Neo-clerodane insect antifeedants from Scutellaria galericulata. Phytochemistry, 1993, 33, 309-315.	2.9	54
79	Developmental inhibition ofSpodoptera litura (Fab.) larvae by a novel caffeoylquinic acid from the wild groundnut,Arachis paraguariensis (Chod et Hassl.). Journal of Chemical Ecology, 1993, 19, 2917-2933.	1.8	88
80	Antifeedant effects of azadirachtin and structurally related compounds on lepidopterous larvae. Entomologia Experimentalis Et Applicata, 1990, 55, 149-160.	1.4	126
81	Azadirachtin: structural requirements for reducing growth and increasing mortality in lepidopterous larvae. Entomologia Experimentalis Et Applicata, 1990, 55, 169-181.	1.4	55
82	Behavioral and electrophysiological study of antifeedant mechanisms associated with polyhydroxy alkaloids. Journal of Chemical Ecology, 1990, 16, 3167-3196.	1.8	105
83	Insect antifeedant activity associated with compounds isolated from species ofLonchocarpus andTephrosia. Journal of Chemical Ecology, 1990, 16, 365-380.	1.8	62
84	Neo-clerodane insect antifeedants from Scutellaria galericulata. Phytochemistry, 1990, 29, 1793-1796.	2.9	75
85	The structure of two new clerodane diterpenoid potent insect antifeedants from Scutellaria woronowii (Juz); jodrellin A & B. Tetrahedron Letters, 1989, 30, 4737-4740.	1.4	66
86	Insect antifeedants from azadirachta indica (part 5): Chemical modification and structure-activity relationships of azadirachtin and some related limonoids. Tetrahedron, 1989, 45, 5175-5192.	1.9	60
87	Insect antifeedants: a behavioural and electrophysiological investigation of natural and synthetically derived clerodane diterpenoids. Entomologia Experimentalis Et Applicata, 1988, 46, 267-274.	1.4	68
88	Synthesis of a hydroxy dihydrofuran acetal related to azadirachtin: A potent insect antifeedant. Tetrahedron Letters, 1987, 28, 221-224.	1.4	90
89	Sensitivity variations in insect chemoreceptors; A review. Experientia, 1986, 42, 13-19.	1.2	143
90	Food selection by locusts: The rÃ1e of learning in rejection behaviour. Entomologia Experimentalis Et Applicata, 1985, 39, 273-278.	1.4	40

#	Article	IF	CITATIONS
91	The role of the secondary plant compound 2,5â€dihydroxymethyl 3,4â€dihydroxypyrrolidine as a feeding inhibitor for insects. Entomologia Experimentalis Et Applicata, 1984, 36, 209-216.	1.4	51