Dinglan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4817064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>ERR</scp> <i>α</i> augments <scp>HIF</scp> â€l signalling by directly interacting with <scp>HIF</scp> â€l <i>α</i> in normoxic and hypoxic prostate cancer cells. Journal of Pathology, 2014, 233, 61-73.	4.5	72
2	lon channel <scp>TRPM8</scp> promotes hypoxic growth of prostate cancer cells via an <scp>O₂</scp> â€independent and <scp>RACK1</scp> â€mediated mechanism of <scp>HIF</scp> â€ stabilization. Journal of Pathology, 2014, 234, 514-525.	€્યોક	53
3	Development of a novel and economical agar-based non-adherent three-dimensional culture method for enrichment of cancer stem-like cells. Stem Cell Research and Therapy, 2018, 9, 243.	5.5	48
4	Long non-coding RNA HOXA-AS2 promotes the migration, invasion and stemness of bladder cancer via regulating miR-125b/Smad2 axis. Experimental Cell Research, 2019, 375, 1-10.	2.6	41
5	Orphan nuclear receptor <scp>TLX</scp> functions as a potent suppressor of oncogeneâ€induced senescence in prostate cancer via its transcriptional coâ€regulation of the <i><scp>CDKN1A</scp></i> (<scp>p21^{WAF1}</scp> ////> (scp>SIRT1 genes, lournal of Pathology, 2015, 236, 103-115.	4.5	40
6	Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer. Cancer Letters, 2018, 418, 211-220.	7.2	40
7	Collapsin response mediator protein-1 (CRMP1) acts as an invasion and metastasis suppressor of prostate cancer via its suppression of epithelial–mesenchymal transition and remodeling of actin cytoskeleton organization. Oncogene, 2017, 36, 546-558.	5.9	38
8	Nuclear Receptor LRH-1 Functions to Promote Castration-Resistant Growth of Prostate Cancer via Its Promotion of Intratumoral Androgen Biosynthesis. Cancer Research, 2018, 78, 2205-2218.	0.9	36
9	Nuclear receptor ERRα and transcription factor ERG form a reciprocal loop in the regulation of TMPRSS2:ERG fusion gene in prostate cancer. Oncogene, 2018, 37, 6259-6274.	5.9	36
10	Increased expression of activated endothelial nitric oxide synthase contributes to antiandrogen resistance in prostate cancer cells by suppressing androgen receptor transactivation. Cancer Letters, 2013, 328, 83-94.	7.2	34
11	In Vitro and In Vivo Antitumor Activity of Cucurbitacin C, a Novel Natural Product From Cucumber. Frontiers in Pharmacology, 2019, 10, 1287.	3.5	32
12	miR-182-5p affects human bladder cancer cell proliferation, migration and invasion through regulating Cofilin 1. Cancer Cell International, 2019, 19, 42.	4.1	32
13	Nuclear receptor HNF4α performs a tumor suppressor function in prostate cancer via its induction of p21-driven cellular senescence. Oncogene, 2020, 39, 1572-1589.	5.9	27
14	Nuclear receptor profiling in prostatospheroids and castration-resistant prostate cancer. Endocrine-Related Cancer, 2018, 25, 35-50.	3.1	24
15	The emerging roles of orphan nuclear receptors in prostate cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 23-36.	7.4	23
16	Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription. Oncogene, 2018, 37, 3340-3355.	5.9	20
17	Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Oncogene, 2021, 40, 2625-2634.	5.9	19
18	Targeting prostate cancer stem-like cells by an immunotherapeutic platform based on immunogenic peptide-sensitized dendritic cells-cytokine-induced killer cells. Stem Cell Research and Therapy, 2020, 11, 123.	5.5	16

Dinglan Wu

#	Article	IF	CITATIONS
19	Orphan nuclear receptor TLX promotes immunosuppression via its transcriptional activation of PD-L1 in glioma. , 2021, 9, e001937.		15
20	Cofilin 1 promotes bladder cancer and is regulated by TCF7L2. Oncotarget, 2017, 8, 92043-92054.	1.8	12
21	Nuclear factor IX promotes glioblastoma development through transcriptional activation of Ezrin. Oncogenesis, 2020, 9, 39.	4.9	11
22	Study on the Significance of Cofilin 1 Overexpression in Human Bladder Cancer. Tumori, 2017, 103, 537-542.	1.1	7
23	<i>IL1</i> genes polymorphism and the risk of renal cell carcinoma in Chinese Han population. Oncotarget, 2017, 8, 56021-56029.	1.8	7
24	Endothelial nitric oxide synthase (eNOS)-NO signaling axis functions to promote the growth of prostate cancer stem-like cells. Stem Cell Research and Therapy, 2022, 13, 188.	5.5	7