
Peter Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814744/publications.pdf Version: 2024-02-01

DETED NACY

#	Article	IF	CITATIONS
1	Microbes affect gut epithelial cell composition through immune-dependent regulation of intestinal stem cell differentiation. Cell Reports, 2022, 38, 110572.	6.4	30
2	A transcriptomic atlas of Aedes aegypti reveals detailed functional organization of major body parts and gut regional specializations in sugar-fed and blood-fed adult females. ELife, 2022, 11, .	6.0	36
3	Hypertrophy of Rat Skeletal Muscle Is Associated with Increased SIRT1/Akt/mTOR/S6 and Suppressed Sestrin2/SIRT3/FOXO1 Levels. International Journal of Molecular Sciences, 2021, 22, 7588.	4.1	6
4	Hydrogen sulfide inhibits calcification of heart valves; implications for calcific aortic valve disease. British Journal of Pharmacology, 2020, 177, 793-809.	5.4	19
5	A proofâ€ofâ€concept, Phase 2 clinical trial of the gastrointestinal safety of a hydrogen sulfideâ€releasing antiâ€inflammatory drug. British Journal of Pharmacology, 2020, 177, 769-777.	5.4	72
6	Recommendations for Effective Intersectoral Collaboration in Health Promotion Interventions: Results from Joint Action CHRODIS-PLUS Work Package 5 Activities. International Journal of Environmental Research and Public Health, 2020, 17, 6474.	2.6	15
7	The reaction of hydrogen sulfide with disulfides: formation of a stable trisulfide and implications for biological systems. British Journal of Pharmacology, 2019, 176, 671-683.	5.4	73
8	Nephrocytes Remove Microbiota-Derived Peptidoglycan from Systemic Circulation to Maintain Immune Homeostasis. Immunity, 2019, 51, 625-637.e3.	14.3	39
9	Highlighted mechanistic aspects in the chemical biology of reactive sulfur species. British Journal of Pharmacology, 2019, 176, 511-513.	5.4	3
10	Metabolism of sulfur compounds in homocystinurias. British Journal of Pharmacology, 2019, 176, 594-606.	5.4	27
11	Autophagy maintains stem cells and intestinal homeostasis in Drosophila. Scientific Reports, 2018, 8, 4644.	3.3	46
12	<i>Drosophila</i> Atg16 promotes enteroendocrine cell differentiation via regulation of intestinal Slit/Robo signaling. Development (Cambridge), 2017, 144, 3990-4001.	2.5	31
13	Loss of Atg16 delays the alcohol-induced sedation response via regulation of Corazonin neuropeptide production in Drosophila. Scientific Reports, 2016, 6, 34641.	3.3	35
14	Stem cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila. DMM Disease Models and Mechanisms, 2016, 9, 501-12.	2.4	18
15	The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Molecular Biology of the Cell, 2016, 27, 3132-3142.	2.1	173
16	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
17	Autophagosome–lysosome fusion is independent of V-ATPase-mediated acidification. Nature Communications, 2015, 6, 7007.	12.8	314
18	Interactions of hydrogen sulfide with myeloperoxidase. British Journal of Pharmacology, 2015, 172, 1516-1532.	5.4	96

Peter Nagy

#	Article	IF	CITATIONS
19	How and why to study autophagy in Drosophila: It's more than just a garbage chute. Methods, 2015, 75, 151-161.	3.8	106
20	Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in <i>Drosophila</i> . Autophagy, 2014, 10, 453-467.	9.1	75
21	Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition. Free Radical Biology and Medicine, 2014, 70, 86-95.	2.9	27
22	Nitrosopersulfide (SSNOâ^') accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biology, 2014, 2, 234-244.	9.0	133
23	Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 876-891.	2.4	222
24	Polysulfides Link H ₂ S to Protein Thiol Oxidation. Antioxidants and Redox Signaling, 2013, 19, 1749-1765.	5.4	410
25	Kinetics and Mechanisms of Thiol–Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways. Antioxidants and Redox Signaling, 2013, 18, 1623-1641.	5.4	341
26	Myc-Driven Overgrowth Requires Unfolded Protein Response-Mediated Induction of Autophagy and Antioxidant Responses in Drosophila melanogaster. PLoS Genetics, 2013, 9, e1003664.	3.5	81
27	Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in <i>Drosophila</i> . Journal of Cell Biology, 2013, 201, 531-539.	5.2	307
28	Conjugation of Glutathione to Oxidized Tyrosine Residues in Peptides and Proteins. Journal of Biological Chemistry, 2012, 287, 26068-26076.	3.4	24
29	Advantages and Limitations of Different p62-Based Assays for Estimating Autophagic Activity in Drosophila. PLoS ONE, 2012, 7, e44214.	2.5	145
30	Model for the Exceptional Reactivity of Peroxiredoxins 2 and 3 with Hydrogen Peroxide. Journal of Biological Chemistry, 2011, 286, 18048-18055.	3.4	97
31	Redox Chemistry of Biological Thiols. Advances in Molecular Toxicology, 2010, , 183-222.	0.4	94
32	Reactions of superoxide with the myoglobin tyrosyl radical. Free Radical Biology and Medicine, 2010, 48, 1540-1547.	2.9	30
33	Neutrophil-mediated oxidation of enkephalins via myeloperoxidase-dependent addition of superoxide. Free Radical Biology and Medicine, 2010, 49, 792-799.	2.9	23
34	Hypothiocyanous acid is a potent inhibitor of apoptosis and caspase 3 activation in endothelial cells. Free Radical Biology and Medicine, 2010, 49, 1054-1063.	2.9	46
35	Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3. Biochemical Journal, 2010, 432, 313-321.	3.7	52
36	Rapid Reaction of Hydrogen Sulfide with the Neutrophil Oxidant Hypochlorous Acid to Generate Polysulfides. Chemical Research in Toxicology, 2010, 23, 1541-1543.	3.3	191

Peter Nagy

#	Article	IF	CITATIONS
37	Superoxide-mediated Formation of Tyrosine Hydroperoxides and Methionine Sulfoxide in Peptides through Radical Addition and Intramolecular Oxygen Transfer. Journal of Biological Chemistry, 2009, 284, 14723-14733.	3.4	45
38	Kinetics and Mechanisms of the Reaction of Hypothiocyanous Acid with 5-Thio-2-nitrobenzoic Acid and Reduced Glutathione. Chemical Research in Toxicology, 2009, 22, 1833-1840.	3.3	101
39	Kinetics and mechanism of triethylamine-catalyzed 1,3-proton shift. Journal of Fluorine Chemistry, 2008, 129, 409-415.	1.7	11
40	Reactive Sulfur Species:  Kinetics and Mechanisms of the Reaction of Cysteine Thiosulfinate Ester with Cysteine to Give Cysteine Sulfenic Acid. Journal of Organic Chemistry, 2007, 72, 8838-8846.	3.2	37
41	Kinetics and Mechanism of the Comproportionation of Hypothiocyanous Acid and Thiocyanate to Give Thiocyanogen in Acidic Aqueous Solution. Inorganic Chemistry, 2007, 46, 285-292.	4.0	29
42	Reactive Sulfur Species:  Hydrolysis of Hypothiocyanite To Give Thiocarbamate- <i>S</i> -oxide. Journal of the American Chemical Society, 2007, 129, 15756-15757.	13.7	19
43	Kinetics and Mechanism of the Oxidation of the Glutathione Dimer by Hypochlorous Acid and Catalytic Reduction of the Chloroamine Product by Glutathione Reductase. Chemical Research in Toxicology, 2007, 20, 79-87.	3.3	25
44	Reactive Sulfur Species: Kinetics and Mechanism of the Hydrolysis of Cysteine Thiosulfinate Ester. Chemical Research in Toxicology, 2007, 20, 1364-1372.	3.3	32
45	Revisiting a proposed kinetic model for the reaction of cysteine and hydrogen peroxide via cysteine sulfenic acid. International Journal of Chemical Kinetics, 2007, 39, 32-38.	1.6	19
46	Reactive Sulfur Species:  Kinetics and Mechanisms of the Oxidation of Cysteine by Hypohalous Acid to Give Cysteine Sulfenic Acid. Journal of the American Chemical Society, 2007, 129, 14082-14091.	13.7	164
47	Thiocyanate Is an Efficient Endogenous Scavenger of the Phagocytic Killing Agent Hypobromous Acid. Chemical Research in Toxicology, 2006, 19, 587-593.	3.3	64
48	Lactoperoxidase-Catalyzed Oxidation of Thiocyanate by Hydrogen Peroxide:  A Reinvestigation of Hypothiocyanite by Nuclear Magnetic Resonance and Optical Spectroscopy. Biochemistry, 2006, 45, 12610-12616.	2.5	45
49	On the kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. Journal of Pharmaceutical Sciences, 2006, 95, 15-18.	3.3	22
50	The decomposition and formation of the platinum–thallium bond in the [(CN)5Pt–Tl(edta)]4â^' complex: kinetics and mechanism. Journal of Molecular Liquids, 2005, 118, 195-207.	4.9	5
51	Solubility, Complex Formation, and Redox Reactions in the Tl2O3â^'HCN/CN-â^'H2O System. Crystal Structures of the Cyano Compounds Tl(CN)3·H2O, Na[Tl(CN)4]·3H2O, K[Tl(CN)4], and TlI[TlIII(CN)4] and of Tll2C2O4. Inorganic Chemistry, 2005, 44, 2347-2357.	4.0	15
52	Reactive Sulfur Species:  Kinetics and Mechanism of the Oxidation of Cystine by Hypochlorous Acid to Give N,Nâ€~-Dichlorocystine. Chemical Research in Toxicology, 2005, 18, 919-923.	3.3	42
53	Metalâ^'Metal Bond or Isolated Metal Centers? Interaction of Hg(CN)2with Square Planar Transition Metal Cyanides. Inorganic Chemistry, 2005, 44, 9643-9651.	4.0	19
54	Kinetics and Mechanism of Platinumâ^'Thallium Bond Formation:  The Binuclear [(CN)5Ptâ^'Tl(CN)]- and the Trinuclear [(CN)5Ptâ^'Tlâ^'Pt(CN)5]3- Complex. Inorganic Chemistry, 2004, 43, 5216-5221.	4.0	9

#	Article	IF	CITATIONS
55	Kinetics and Mechanism of Formation of the Platinumâ^'Thallium Bond:Â The [(CN)5Ptâ^'Tl(CN)3]3-Complex. Inorganic Chemistry, 2003, 42, 6907-6914.	4.0	6