## Xiao-Fei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814703/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identifying Gene Network Rewiring Based on Partial Correlation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 513-521.                                         | 3.0 | 0         |
| 2  | scDEA: differential expression analysis in single-cell RNA-sequencing data via ensemble learning.<br>Briefings in Bioinformatics, 2022, 23, .                                                 | 6.5 | 12        |
| 3  | Inferring Gene Co-Expression Networks by Incorporating Prior Protein-Protein Interaction Networks.<br>IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2894-2906. | 3.0 | 1         |
| 4  | Imputing dropouts for single-cell RNA sequencing based on multi-objective optimization.<br>Bioinformatics, 2022, 38, 3222-3230.                                                               | 4.1 | 5         |
| 5  | Time-Varying Differential Network Analysis for Revealing Network Rewiring over Cancer Progression.<br>IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1632-1642. | 3.0 | 4         |
| 6  | A Joint Graphical Model for Inferring Gene Networks Across Multiple Subpopulations and Data Types.<br>IEEE Transactions on Cybernetics, 2021, 51, 1043-1055.                                  | 9.5 | 10        |
| 7  | EnTSSR: A Weighted Ensemble Learning Method to Impute Single-Cell RNA Sequencing Data. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2021, 18, 2781-2787.             | 3.0 | 5         |
| 8  | WDNE: an integrative graphical model for inferring differential networks from multi-platform gene expression data with missing values. Briefings in Bioinformatics, 2021, 22, .               | 6.5 | 2         |
| 9  | Differential network analysis by simultaneously considering changes in gene interactions and gene expression. Bioinformatics, 2021, 37, 4414-4423.                                            | 4.1 | 10        |
| 10 | Differential Network Analysis via Weighted Fused Conditional Gaussian Graphical Model. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2020, 17, 2162-2169.             | 3.0 | 2         |
| 11 | EC-PGMGR: Ensemble Clustering Based on Probability Graphical Model With Graph Regularization for Single-Cell RNA-seq Data. Frontiers in Genetics, 2020, 11, 572242.                           | 2.3 | 4         |
| 12 | A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks. Bioinformatics, 2020, 36, 3474-3481.                                        | 4.1 | 51        |
| 13 | Sparse regularized low-rank tensor regression with applications in genomic data analysis. Pattern<br>Recognition, 2020, 107, 107516.                                                          | 8.1 | 6         |
| 14 | scTSSR: gene expression recovery for single-cell RNA sequencing using two-side sparse self-representation. Bioinformatics, 2020, 36, 3131-3138.                                               | 4.1 | 22        |
| 15 | Joint reconstruction of multiple gene networks by simultaneously capturing inter-tumor and intra-tumor heterogeneity. Bioinformatics, 2020, 36, 2755-2762.                                    | 4.1 | 4         |
| 16 | Inferring Gene Network Rewiring by Combining Gene Expression and Gene Mutation Data. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2019, 16, 1042-1048.               | 3.0 | 6         |
| 17 | Joint Learning of Multiple Differential Networks With Latent Variables. IEEE Transactions on Cybernetics, 2019, 49, 3494-3506.                                                                | 9.5 | 10        |
| 18 | Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks. Frontiers in<br>Genetics, 2019, 10, 623.                                                               | 2.3 | 11        |

XIAO-FEI ZHANG

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | DiffNetFDR: differential network analysis with false discovery rate control. Bioinformatics, 2019, 35, 3184-3186.                                                                                  | 4.1 | 14        |
| 20 | EnImpute: imputing dropout events in single-cell RNA-sequencing data via ensemble learning.<br>Bioinformatics, 2019, 35, 4827-4829.                                                                | 4.1 | 29        |
| 21 | LncRNA-Disease Association Prediction Using Two-Side Sparse Self-Representation. Frontiers in Genetics, 2019, 10, 476.                                                                             | 2.3 | 17        |
| 22 | Identifying gene network rewiring using robust differential graphical model with multivariate<br>t-distribution. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1. | 3.0 | 3         |
| 23 | Identifying Gene Network Rewiring by Integrating Gene Expression and Gene Network Data. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2018, 15, 2079-2085.                 | 3.0 | 24        |
| 24 | DiffGraph: an R package for identifying gene network rewiring using differential graphical models.<br>Bioinformatics, 2018, 34, 1571-1573.                                                         | 4.1 | 13        |
| 25 | Subpixel three-dimensional laser imaging with a downscaled avalanche photodiode array using code division multiple access. Communications Physics, 2018, 2, 1-9.                                   | 5.3 | 46        |
| 26 | Incorporating prior information into differential network analysis using non-paranormal graphical models. Bioinformatics, 2017, 33, 2436-2445.                                                     | 4.1 | 40        |
| 27 | Node-based learning of differential networks from multi-platform gene expression data. Methods, 2017, 129, 41-49.                                                                                  | 3.8 | 16        |
| 28 | Node-based differential network analysis in genomics. Computational Biology and Chemistry, 2017, 69,<br>194-201.                                                                                   | 2.3 | 10        |
| 29 | Identifying differential networks based on multi-platform gene expression data. Molecular<br>BioSystems, 2017, 13, 183-192.                                                                        | 2.9 | 14        |
| 30 | A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks. BMC Bioinformatics, 2017, 18, 463.                                                         | 2.6 | 21        |
| 31 | Identifying protein complexes via multi-network clustering. , 2016, , .                                                                                                                            |     | 1         |
| 32 | Protein complex detection based on partially shared multi-view clustering. BMC Bioinformatics, 2016, 17, 371.                                                                                      | 2.6 | 10        |
| 33 | Comparative analysis of housekeeping and tissue-specific driver nodes in human protein interaction networks. BMC Bioinformatics, 2016, 17, 358.                                                    | 2.6 | 14        |
| 34 | Differential network analysis from cross-platform gene expression data. Scientific Reports, 2016, 6,<br>34112.                                                                                     | 3.3 | 29        |
| 35 | A two-layer integration framework for protein complex detection. BMC Bioinformatics, 2016, 17, 100.                                                                                                | 2.6 | 17        |
| 36 | Regularized logistic regression with network-based pairwise interaction for biomarker identification in breast cancer. BMC Bioinformatics, 2016, 17, 108.                                          | 2.6 | 18        |

XIAO-FEI ZHANG

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Determining minimum set of driver nodes in protein-protein interaction networks. BMC<br>Bioinformatics, 2015, 16, 146.                                                                                                                        | 2.6 | 51        |
| 38 | Identifying binary protein-protein interactions from affinity purification mass spectrometry data. BMC Genomics, 2015, 16, 745.                                                                                                               | 2.8 | 11        |
| 39 | Detecting Protein Complexes from Signed Protein-Protein Interaction Networks. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2015, 12, 1333-1344.                                                                      | 3.0 | 36        |
| 40 | Detecting temporal protein complexes from dynamic protein-protein interaction networks. BMC Bioinformatics, 2014, 15, 335.                                                                                                                    | 2.6 | 67        |
| 41 | Detecting overlapping protein complexes based on a generative model with functional and topological properties. BMC Bioinformatics, 2014, 15, 186.                                                                                            | 2.6 | 39        |
| 42 | Identifying Spurious Interactions and Predicting Missing Interactions in the Protein-Protein<br>Interaction Networks via a Generative Network Model. IEEE/ACM Transactions on Computational<br>Biology and Bioinformatics, 2013, 10, 219-225. | 3.0 | 16        |
| 43 | Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix<br>Factorization. PLoS ONE, 2013, 8, e62158.                                                                                                  | 2.5 | 28        |
| 44 | Cancer Subtype Discovery and Biomarker Identification via a New Robust Network Clustering<br>Algorithm. PLoS ONE, 2013, 8, e66256.                                                                                                            | 2.5 | 26        |
| 45 | A Framework for Incorporating Functional Interrelationships into Protein Function Prediction<br>Algorithms. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 740-753.                                              | 3.0 | 37        |
| 46 | Protein Complexes Discovery Based on Protein-Protein Interaction Data via a Regularized Sparse<br>Generative Network Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics,<br>2012, 9, 857-870.                           | 3.0 | 24        |
| 47 | Exploring Overlapping Functional Units with Various Structure in Protein Interaction Networks.<br>PLoS ONE, 2012, 7, e43092.                                                                                                                  | 2.5 | 20        |
| 48 | Protective effects of ion-imprinted chitooligosaccharides as uranium-specific chelating agents against the cytotoxicity of depleted uranium in human kidney cells. Toxicology, 2011, 286, 75-84.                                              | 4.2 | 52        |
| 49 | Face recognition with continuous occlusion using partially iteratively reweighted sparse coding. , 2011, , .                                                                                                                                  |     | 0         |