
Anthony Addlagatta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13339-13344.	7.1	104
2	Design and synthesis of pyrazole–oxindole conjugates targeting tubulin polymerization as new anticancer agents. European Journal of Medicinal Chemistry, 2015, 92, 501-513.	5.5	86
3	Iodine-catalyzed condensation of isatin with indoles: A facile synthesis of di(indolyl)indolin-2-ones and evaluation of their cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2460-2463.	2.2	82
4	Design and Synthesis of Resveratrol-Based Nitrovinylstilbenes as Antimitotic Agents. Journal of Medicinal Chemistry, 2011, 54, 6751-6760.	6.4	81
5	Structural Basis for the Functional Differences between Type I and Type II Human Methionine Aminopeptidases,. Biochemistry, 2005, 44, 14741-14749.	2.5	80
6	4,4-Diphenyl-2,5-cyclohexadienone: Four Polymorphs and Nineteen Crystallographically Independent Molecular Conformations. Angewandte Chemie - International Edition, 2002, 41, 3848-3851.	13.8	79
7	Elucidation of the function of type 1 human methionine aminopeptidase during cell cycle progression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18148-18153.	7.1	75
8	Structure/Function Relationships Responsible for Coenzyme Specificity and the Isomerase Activity of Human Type 1 3β-Hydroxysteroid Dehydrogenase/Isomerase. Journal of Biological Chemistry, 2003, 278, 35483-35490.	3.4	61
9	Identification of an SH3-Binding Motif in a New Class of Methionine Aminopeptidases fromMycobacterium tuberculosisSuggests a Mode of Interaction with the Ribosomeâ€,‡. Biochemistry, 2005, 44, 7166-7174.	2.5	57
10	Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. RSC Advances, 2014, 4, 24001-24006.	3.6	56
11	Rational proteomics I. Fingerprint identification and cofactor specificity in the short-chain oxidoreductase (SCOR) enzyme family. Proteins: Structure, Function and Bioinformatics, 2003, 53, 931-943.	2.6	53
12	Synthesis, cytotoxic, and DNA binding studies of novel fluorinated condensed pyrano pyrazoles. Medicinal Chemistry Research, 2013, 22, 2446-2454.	2.4	49
13	Ultrahigh-resolution structure of a BPTI mutant. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 649-663.	2.5	48
14	Structural Basis for the Unusual Specificity of Escherichia coli Aminopeptidase N. Biochemistry, 2008, 47, 5303-5311.	2.5	48
15	Structure activity relationship studies of imidazo[1,2-a]pyrazine derivatives against cancer cell lines. European Journal of Medicinal Chemistry, 2010, 45, 5208-5216.	5.5	48
16	Synthesis of chalcone-amidobenzothiazole conjugates as antimitotic and apoptotic inducing agents. Bioorganic and Medicinal Chemistry, 2012, 20, 3480-3492.	3.0	44
17	Green Synthesis of Curcumin Capped Gold Nanoparticles and Evaluation of Their Cytotoxicity. Nanoscience and Nanotechnology Letters, 2013, 5, 1258-1265.	0.4	43
18	3â€Substituted 2â€Phenylimidazo[2,1â€ <i>b</i>]benzothiazoles: Synthesis, Anticancer Activity, and Inhibition of Tubulin Polymerization. ChemMedChem, 2012, 7, 292-300.	3.2	39

ANTHONY ADDLAGATTA

#	Article	IF	CITATIONS
19	Synthesis and Biological Evaluation of Imidazopyridine–Oxindole Conjugates as Microtubuleâ€Targeting Agents. ChemMedChem, 2013, 8, 2015-2025.	3.2	36
20	Identification of Pyridinylpyrimidines as Inhibitors of Human Methionine Aminopeptidases. Angewandte Chemie - International Édition, 2006, 45, 3772-3775.	13.8	35
21	Synthesis and biological evaluation of combretastatin-amidobenzothiazole conjugates as potential anticancer agents. European Journal of Medicinal Chemistry, 2012, 56, 166-178.	5.5	34
22	Synthesis and structure–activity relationships of pyridinyl-1H-1,2,3-triazolyldihydroisoxazoles as potent inhibitors of tubulin polymerization. European Journal of Medicinal Chemistry, 2015, 90, 603-619.	5.5	33
23	Design and synthesis of biaryl aryl stilbenes/ethylenes asÂantimicrotubule agents. European Journal of Medicinal Chemistry, 2013, 60, 305-324.	5.5	28
24	Identification, Biochemical and Structural Evaluation of Species-Specific Inhibitors against Type I Methionine Aminopeptidases. Journal of Medicinal Chemistry, 2013, 56, 5295-5305.	6.4	26
25	Crystal structure and vibrational spectrum of N-methylpiperidine betaine hexafluorosilicate. Journal of Molecular Structure, 2001, 598, 267-276.	3.6	24
26	Three-dimensional structure of homodimeric cholesterol esterase–ligand complex at 1.4â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 50-56.	2.5	23
27	Structure of the angiogenesis inhibitor ovalicin bound to its noncognate target, human Type 1 methionine aminopeptidase. Protein Science, 2006, 15, 1842-1848.	7.6	23
28	Synthesis of tetrazole–isoxazoline hybrids as a new class of tubulin polymerization inhibitors. MedChemComm, 2012, 3, 1386.	3.4	22
29	Identification of the Molecular Basis of Inhibitor Selectivity between the Human and Streptococcal Type I Methionine Aminopeptidases. Journal of Medicinal Chemistry, 2015, 58, 2350-2357.	6.4	20
30	Diketo acids and their amino acid/dipeptidic analogues as promising scaffolds for the development of bacterial methionine aminopeptidase inhibitors. RSC Advances, 2015, 5, 34173-34183.	3.6	20
31	Determining Structure and Function of Steroid Dehydrogenase Enzymes by Sequence Analysis, Homology Modeling, and Rational Mutational Analysis. Annals of the New York Academy of Sciences, 2005, 1061, 135-148.	3.8	19
32	Synthesis, cytotoxicity and hDHFR inhibition studies of 2H-pyrido[1,2-a]pyrimidin-2-ones. MedChemComm, 2013, 4, 817.	3.4	19
33	Structure/function aspects of human 3β-hydroxysteroid dehydrogenase. Molecular and Cellular Endocrinology, 2004, 215, 73-82.	3.2	18
34	Structural studies of Enterococcus faecalis methionine aminopeptidase and design of microbe specific 2,2′-bipyridine based inhibitors. MedChemComm, 2012, 3, 1406.	3.4	18
35	Paradoxical role of C1561T glutamate carboxypeptidase II (GCPII) genetic polymorphism in altering disease susceptibility. Gene, 2012, 497, 273-279.	2.2	17
36	Catalyst-free efficient synthesis of polyhydroquinolines using polyethylene glycol as a solvent and evaluation of their cytotoxicity. Medicinal Chemistry Research, 2014, 23, 1031-1036.	2.4	17

#	Article	IF	CITATIONS
37	First Stereoselective Total Synthesis and Biological Evaluation of Amphidinin B and Its Analogues. European Journal of Organic Chemistry, 2011, 2011, 696-706.	2.4	16
38	Discovery of a New Genetic Variant of Methionine Aminopeptidase from Streptococci with Possible Post-Translational Modifications: Biochemical and Structural Characterization. PLoS ONE, 2013, 8, e75207.	2.5	16
39	Glu121‣ys319 salt bridge between catalytic and Nâ€terminal domains is pivotal for the activity and stability of <i>Escherichia coli</i> aminopeptidase N. Protein Science, 2012, 21, 727-736.	7.6	15
40	Discovery of α,β―and α,γâ€Diamino Acid Scaffolds for the Inhibition of M1 Family Aminopeptidases. ChemMedChem, 2011, 6, 1971-1976.	3.2	14
41	Structural basis for the inhibition of <scp>M</scp> 1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with <scp><i>E</i></scp> <i>. coli</i> aminopeptidase <scp>N</scp> . Protein Science, 2015, 24, 823-831.	7.6	14
42	Rational genomics I: Antisense open reading frames and codon bias in short-chain oxido reductase enzymes and the evolution of the genetic code. Proteins: Structure, Function and Bioinformatics, 2005, 61, 900-906.	2.6	13
43	Discovery of Tröger's base analogues as selective inhibitors against human breast cancer cell line: Design, synthesis and cytotoxic evaluation. European Journal of Medicinal Chemistry, 2014, 86, 39-47.	5.5	12
44	Highly functionalized tetrahydropyridines are cytotoxic and selective inhibitors of human puromycin sensitive aminopeptidase. European Journal of Medicinal Chemistry, 2015, 106, 26-33.	5.5	12
45	The unique functional role of the C–Hâ≀¯S hydrogen bond in the substrate specificity and enzyme catalysis of type 1 methionine aminopeptidase. Molecular BioSystems, 2016, 12, 2408-2416.	2.9	12
46	Human Naa50 Protein Displays Broad Substrate Specificity for Amino-terminal Acetylation. Journal of Biological Chemistry, 2016, 291, 20530-20538.	3.4	12
47	Expression, Functional Characterization and X-ray Analysis of HosA, A Member of MarR Family of Transcription Regulator from Uropathogenic Escherichia coli. Protein Journal, 2016, 35, 269-282.	1.6	11
48	Selective targeting of the conserved active site cysteine of <i>MycobacteriumÂtuberculosis</i> methionine aminopeptidase with electrophilic reagents. FEBS Journal, 2014, 281, 4240-4248.	4.7	10
49	Bengamides display potent activity against drug-resistant Mycobacterium tuberculosis. Scientific Reports, 2019, 9, 14396.	3.3	10
50	Unraveling structural insights of ribokinase from Leishmania donovani. International Journal of Biological Macromolecules, 2019, 136, 253-265.	7.5	10
51	Association of glutamate carboxypeptidase II (GCPII) haplotypes with breast and prostate cancer risk. Gene, 2013, 516, 76-81.	2.2	9
52	Aminobenzosuberone Scaffold as a Modular Chemical Tool for the Inhibition of Therapeutically Relevant M1 Aminopeptidases. Molecules, 2018, 23, 2607.	3.8	8
53	Synthesis and mechanistic studies of diketo acids and their bioisosteres as potential antibacterial agents. European Journal of Medicinal Chemistry, 2019, 163, 67-82.	5.5	7
54	Pancreatic α-amylase inhibition and free radical scavenging activity of substituted pyranochromenone derivatives. Medicinal Chemistry Research, 2014, 23, 2821-2833.	2.4	6

ANTHONY ADDLAGATTA

#	Article	IF	CITATIONS
55	Discovery of a new class of type 1 methionine aminopeptidases that have relaxed substrate specificity. International Journal of Biological Macromolecules, 2019, 129, 523-529.	7.5	6
56	Discovery of natural product ovalicin sensitive type 1 methionine aminopeptidases: molecular and structural basis. Biochemical Journal, 2019, 476, 991-1003.	3.7	4
57	Puromycin, a selective inhibitor of PSA acts as a substrate for other M1 family aminopeptidases: Biochemical and structural basis. International Journal of Biological Macromolecules, 2020, 165, 1373-1381.	7.5	3
58	Methionine aminopeptidases with short sequence inserts within the catalytic domain are differentially inhibited: Structural and biochemical studies of three proteins from Vibrio spp European Journal of Medicinal Chemistry, 2021, 209, 112883.	5.5	3
59	Exo-selective intermolecular Diels–Alder reaction by PyrI4 and AbnU on non-natural substrates. Communications Chemistry, 2021, 4, .	4.5	3
60	Selective inhibition of Helicobacter pylori methionine aminopeptidase by azaindole hydroxamic acid derivatives: Design, synthesis, in vitro biochemical and structural studies. Bioorganic Chemistry, 2021, 115, 105185.	4.1	3
61	Discovery, Structural and Biochemical Studies of a rare Clu/Asp Specific M1 Class Aminopeptidase from Legionella pneumophila. International Journal of Biological Macromolecules, 2018, 120, 1111-1118.	7.5	2
62	Chemical shift assignments of zinc finger domain of methionine aminopeptidase 1 (MetAP1) from Homo sapiens. Biomolecular NMR Assignments, 2015, 9, 351-353.	0.8	1
63	Cover Picture: Identification of Pyridinylpyrimidines as Inhibitors of Human Methionine Aminopeptidases (Angew. Chem. Int. Ed. 23/2006). Angewandte Chemie - International Edition, 2006, 45, 3717-3717.	13.8	0