Christine Selhuber-Unkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermoresponsive Hydrogels with Improved Actuation Function by Interconnected Microchannels. Advanced Intelligent Systems, 2022, 4, 2100081.	6.1	10
2	Control of Cell Adhesion using Hydrogel Patterning Techniques for Applications in Traction Force Microscopy. Journal of Visualized Experiments, 2022, , .	0.3	0
3	Cellular properties of human gingival fibroblasts on novel and conventional implant-abutment materials. Dental Materials, 2022, 38, 540-548.	3.5	10
4	Influence of carrier materials and coatings on retinal pigment epithelium cultivation and functions. Experimental Eye Research, 2022, 219, 109063.	2.6	1
5	A Co-Polymerizable Linker for the Covalent Attachment of Fibronectin Makes pHEMA Hydrogels Cell-Adhesive. Gels, 2022, 8, 258.	4.5	3
6	Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration. Nano Letters, 2021, 21, 3690-3697.	9.1	29
7	Unidirectional transport of superparamagnetic beads and biological cells along oval magnetic elements. Applied Physics Letters, 2021, 118, 232405.	3.3	3
8	Tunable 3D Hydrogel Microchannel Networks to Study Confined Mammalian Cell Migration. Advanced Healthcare Materials, 2021, 10, e2100625.	7.6	12
9	Quantifying force transmission through fibroblasts: changes of traction forces under external shearing. European Biophysics Journal, 2021, , 1.	2.2	2
10	10.1063/5.0044310.6., 2021,,.		0
11	Tunable 3D Hydrogel Microchannel Networks to Study Confined Mammalian Cell Migration (Adv.) Tj ETQq1 1 0.:	784314 rg 7.6	BT ₀ Overlock
12	Migration of Microparticle-Containing Amoeba through Constricted Environments. ACS Biomaterials Science and Engineering, 2020, 6, 889-897.	5.2	3
13	Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect. Sensors and Actuators A: Physical, 2020, 309, 112023.	4.1	9
14	The threshold of amyloid aggregation of beta-lactoglobulin: Relevant factor combinations. Journal of Food Engineering, 2020, 283, 110005.	5.2	18
15	Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and diagnostic instruments. Biosensors and Bioelectronics, 2020, 153, 112034.	10.1	9
16	Automated analysis of soft hydrogel microindentation: Impact of various indentation parameters on the measurement of Young's modulus. PLoS ONE, 2019, 14, e0220281.	2.5	30
17	Living Materials Herald a New Era in Soft Robotics. Advanced Materials, 2019, 31, e1807747.	21.0	78
18	Influence of the polydispersity of pH 2 and pH 3.5 beta-lactoglobulin amyloid fibril solutions on analytical methods. Furopean Polymer Journal, 2019, 120, 109211.	5.4	32

#	Article	IF	CITATIONS
19	Spectral Content of a Single Non-Brownian Trajectory. Physical Review X, 2019, 9, .	8.9	65
20	Systematically Designed Periodic Electrophoretic Deposition for Decorating 3D Carbon-Based Scaffolds with Bioactive Nanoparticles. ACS Biomaterials Science and Engineering, 2019, 5, 4393-4404.	5.2	10
21	DFG-Graduiertenkolleg 2154 "Materials for Brain: Dünnschichtbasierte Funktionsmaterialien für die minimal-invasive Therapie von Erkrankungen des Gehirns". Neuroforum, 2019, 25, 69-71.	0.3	0
22	Transient superdiffusion of polydisperse vacuoles in highly motile amoeboid cells. Journal of Chemical Physics, 2019, 150, 144901.	3.0	24
23	Magnetic particle mapping using magnetoelectric sensors as an imaging modality. Scientific Reports, 2019, 9, 2086.	3.3	23
24	Biomimetic Carbon Fiber Systems Engineering: A Modular Design Strategy To Generate Biofunctional Composites from Graphene and Carbon Nanofibers. ACS Applied Materials & Interfaces, 2019, 11, 5325-5335.	8.0	24
25	3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic <i>Acanthamoeba Castellanii</i> . ACS Biomaterials Science and Engineering, 2019, 5, 1784-1792.	5.2	19
26	Interconnected Microchannels in Hydrogels to Control Cell Adhesion and Mechanotransduction. Biophysical Journal, 2018, 114, 192a.	0.5	0
27	Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS Applied Materials & Interfaces, 2018, 10, 43874-43886.	8.0	32
28	High-throughput micro-nanostructuring by microdroplet inkjet printing. Beilstein Journal of Nanotechnology, 2018, 9, 2372-2380.	2.8	0
29	Detection and characterization of attenuated multimode waveguiding in SiO2 slabs using photoemission electron microscopy. Physical Review B, 2018, 98, .	3.2	3
30	Highâ€Frequency Mechanostimulation of Cell Adhesion. Angewandte Chemie - International Edition, 2017, 56, 225-229.	13.8	38
31	Highâ€Frequency Mechanostimulation of Cell Adhesion. Angewandte Chemie, 2017, 129, 231-235.	2.0	6
32	Impact of Cleaning Procedures on Adhesion of Living Cells to Three Abutment Materials. International Journal of Oral and Maxillofacial Implants, 2017, 32, 976-984.	1.4	17
33	Noncovalent Spiropyran Coatings for Photoinduced Wettability Switching. Journal of Nanomaterials, 2017, 2017, 1-6.	2.7	1
34	Adhesion forces and mechanics in mannose-mediated acanthamoeba interactions. PLoS ONE, 2017, 12, e0176207.	2.5	13
35	Intensity interrogation near cutoff resonance for label-free cellular profiling. Scientific Reports, 2016, 6, 24685.	3.3	17
36	Rapid Reversible Photoswitching of Integrinâ€Mediated Adhesion at the Singleâ€Cell Level. Advanced Materials, 2016, 28, 1799-1802.	21.0	71

CHRISTINE SELHUBER-UNKEL

#	Article	IF	CITATIONS
37	Adhesion of living cells to abutment materials, dentin, and adhesive luting cement with different surface qualities. Dental Materials, 2016, 32, 1524-1535.	3.5	27
38	Reinforcement of integrin-mediated T-Lymphocyte adhesion by TNF-induced Inside-out Signaling. Scientific Reports, 2016, 6, 30452.	3.3	7
39	A Tunable Scaffold of Microtubular Graphite for 3D Cell Growth. ACS Applied Materials & Interfaces, 2016, 8, 14980-14985.	8.0	23
40	Human blood microfluidic test chip for imaging, label-free biosensor. Microsystem Technologies, 2016, 22, 1513-1518.	2.0	4
41	Cell adhesion on NiTi thin film sputter-deposited meshes. Materials Science and Engineering C, 2016, 59, 611-616.	7.3	10
42	Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materials Science and Engineering C, 2016, 59, 10-18.	7.3	78
43	Photocatalytic properties of titania thin films prepared by sputtering versus evaporation and aging of induced oxygen vacancy defects. Applied Catalysis B: Environmental, 2016, 180, 362-371.	20.2	54
44	Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection. Biomedical Optics Express, 2015, 6, 3724.	2.9	79
45	Reinforcement of Integrin-Mediated T-Lymphocyte Adhesion by TNF. Biophysical Journal, 2015, 108, 98a.	0.5	0
46	Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Scientific Reports, 2015, 5, 11690.	3.3	159
47	Bioactive compounds immobilized on Ti and TiNbHf: AFM-based investigations of biofunctionalization efficiency and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2015, 136, 704-711.	5.0	13
48	Controlled Self-Assembly of Hexagonal Nanoparticle Patterns on Nanotopographies. Langmuir, 2015, 31, 9261-9265.	3.5	6
49	Influence of the PDMS substrate stiffness on the adhesion of <i>Acanthamoeba castellanii</i> . Beilstein Journal of Nanotechnology, 2014, 5, 1393-1398.	2.8	20
50	Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. Journal of Food Engineering, 2014, 143, 53-61.	5.2	98
51	In vitro adhesion of Acanthamoeba castellanii to soft contact lenses depends on water content and disinfection procedure. Contact Lens and Anterior Eye, 2014, 37, 262-266.	1.7	20
52	Material-based three-dimensional imaging with nanostructured surfaces. Applied Physics Letters, 2013, 102, 011116.	3.3	11
53	Photometric aptasensor using biofunctionalized photonic crystal slabs. , 2013, , .		3
54	Photonic crystal slabs for surface contrast enhancement in microscopy of transparent objects. Optics Express, 2012, 20, 14451.	3.4	6

CHRISTINE SELHUBER-UNKEL

#	Article	IF	CITATIONS
55	<i>In Vivo</i> Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules. Physical Review Letters, 2011, 106, 048103.	7.8	553
56	Impact of Local versus Global Ligand Density on Cellular Adhesion. Nano Letters, 2011, 11, 1469-1476.	9.1	149
57	Measuring Cell Adhesion Forces: Theory and Principles. Methods in Molecular Biology, 2011, 736, 355-377.	0.9	20
58	Arachidonic Acid Randomizes Endothelial Cell Motion and Regulates Adhesion and Migration. PLoS ONE, 2011, 6, e25196.	2.5	19
59	Mimicking the Cellular Environment: Effects of Elastic Nanopatterned Substrates on Integrin-Mediated Cellular Interactions. Biophysical Journal, 2010, 98, 729a.	0.5	0
60	Cell Adhesion Strength Is Controlled by Intermolecular Spacing of Adhesion Receptors. Biophysical Journal, 2010, 98, 543-551.	0.5	187
61	Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method. Biophysical Journal, 2010, 98, 1364-1372.	0.5	188
62	Tracking Cell-Nanoparticle Interactions. Journal of Biomedical Nanotechnology, 2009, 5, 634-640.	1.1	4
63	Quantifying and pinpointing sources of noise in optical tweezers experiments. , 2009, , .		4
64	Plasmodium Sporozoite Motility Is Modulated by the Turnover of Discrete Adhesion Sites. Cell Host and Microbe, 2009, 6, 551-562.	11.0	163
65	Variety in intracellular diffusion during the cell cycle. Physical Biology, 2009, 6, 025015.	1.8	60
66	Cooperativity in Adhesion Cluster Formation during Initial Cell Adhesion. Biophysical Journal, 2008, 95, 5424-5431.	0.5	114
67	Quantitative Optical Trapping of Single Gold Nanorods. Nano Letters, 2008, 8, 2998-3003.	9.1	171
68	Tuning Surface Energies with Nanopatterned Substrates. Nano Letters, 2006, 6, 267-270.	9.1	18
69	Cellular Unbinding Forces of Initial Adhesion Processes on Nanopatterned Surfaces Probed with Magnetic Tweezers. Nano Letters, 2006, 6, 398-402.	9.1	93