
## Horst Werner Korf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813805/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Klaus Unsicker: in honor of his eightieth birthday. Cell and Tissue Research, 2022, 387, 1-7.                                                                                                                                                     | 2.9 | 0         |
| 2  | Multimodal investigation of the association between shift work and the brain in a population-based sample of older adults. Scientific Reports, 2022, 12, 2969.                                                                                    | 3.3 | 3         |
| 3  | The Role of the Melatoninergic System in Circadian and Seasonal Rhythms—Insights From Different<br>Mouse Strains. Frontiers in Physiology, 2022, 13, 883637.                                                                                      | 2.8 | 10        |
| 4  | Timeâ€dependent changes in proliferation, <scp>DNA</scp> damage and clock gene expression in<br>hepatocellular carcinoma and healthy liver of a transgenic mouse model. International Journal of<br>Cancer, 2021, 148, 226-237.                   | 5.1 | 9         |
| 5  | Arcuate nucleus, median eminence, and hypophysial pars tuberalis. Handbook of Clinical Neurology /<br>Edited By P J Vinken and G W Bruyn, 2021, 180, 227-251.                                                                                     | 1.8 | 14        |
| 6  | Relationship between locomotor activity rhythm and corticosterone levels during HCC development, progression, and treatment in a mouse model. Journal of Pineal Research, 2021, 70, e12724.                                                       | 7.4 | 7         |
| 7  | Does timing matter in radiotherapy of hepatocellular carcinoma? An experimental study in mice.<br>Cancer Medicine, 2021, 10, 7712-7725.                                                                                                           | 2.8 | 9         |
| 8  | Seasonal Variations of Locomotor Activity Rhythms in Melatonin-Proficient and -Deficient Mice under<br>Seminatural Outdoor Conditions. Journal of Biological Rhythms, 2020, 35, 58-71.                                                            | 2.6 | 10        |
| 9  | Diurnal regulation of sphingolipids in blood. Biochimica Et Biophysica Acta - Molecular and Cell<br>Biology of Lipids, 2019, 1864, 304-311.                                                                                                       | 2.4 | 10        |
| 10 | Editorial – Special issue of the 28th Conference of European Comparative Endocrinologists<br>(CECE-2016) – Golden Jubilee of the European Society for Comparative Endocrinology (ESCE). General<br>and Comparative Endocrinology, 2018, 258, 1-3. | 1.8 | 0         |
| 11 | Leopoldina Symposium "Seasonal Rhythmsâ€, Leuven Belgium, 25. 8. 2016. General and Comparative<br>Endocrinology, 2018, 258, 213-214.                                                                                                              | 1.8 | 1         |
| 12 | Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. General and Comparative Endocrinology, 2018, 258, 236-243.                                                                | 1.8 | 62        |
| 13 | Synchronizing effects of melatonin on diurnal and circadian rhythms. General and Comparative Endocrinology, 2018, 258, 215-221.                                                                                                                   | 1.8 | 113       |
| 14 | Dynamics of core body temperature cycles in long-term measurements under real life conditions in women. Chronobiology International, 2018, 35, 8-23.                                                                                              | 2.0 | 24        |
| 15 | Exercise time cues (zeitgebers) for human circadian systems can foster health and improve performance: a systematic review. BMJ Open Sport and Exercise Medicine, 2018, 4, e000443.                                                               | 2.9 | 72        |
| 16 | Differential Regulation of Cell Proliferation and Apoptosis by Melatonin Receptor Subtype-Signaling<br>in the Adult Murine Brain. Neuroendocrinology, 2018, 107, 158-166.                                                                         | 2.5 | 1         |
| 17 | Impaired Photic Entrainment of Spontaneous Locomotor Activity in Mice Overexpressing Human<br>Mutant α-Synuclein. International Journal of Molecular Sciences, 2018, 19, 1651.                                                                    | 4.1 | 19        |
| 18 | Selective targeting of tumor associated macrophages in different tumor models. PLoS ONE, 2018, 13, e0193015.                                                                                                                                      | 2.5 | 20        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impact of melatonin receptorâ€signaling on Zeitgeber timeâ€dependent changes in cell proliferation and apoptosis in the adult murine hippocampus. Hippocampus, 2017, 27, 495-506.                                                          | 1.9 | 18        |
| 20 | Quantifying Filopodia in Cultured Astrocytes by an Algorithm. Neurochemical Research, 2017, 42, 1795-1809.                                                                                                                                 | 3.3 | 10        |
| 21 | Hypoxia Causes Downregulation of Dicer in Hepatocellular Carcinoma, Which Is Required for<br>Upregulation of Hypoxia-Inducible Factor 1α and Epithelial–Mesenchymal Transition. Clinical Cancer<br>Research, 2017, 23, 3896-3905.          | 7.0 | 33        |
| 22 | Involvement of the cerebellum in Parkinson disease and dementia with Lewy bodies. Annals of Neurology, 2017, 81, 898-903.                                                                                                                  | 5.3 | 44        |
| 23 | Identification of an endocannabinoid system in the rat pars tuberalis—a possible interface in the hypothalamic-pituitary-adrenal system?. Cell and Tissue Research, 2017, 368, 115-123.                                                    | 2.9 | 6         |
| 24 | Alzheimer's Disease: Characterization of the Brain Sites of the Initial Tau Cytoskeletal Pathology Will<br>Improve the Success of Novel Immunological Anti-Tau Treatment Approaches. Journal of Alzheimer's<br>Disease, 2017, 57, 683-696. | 2.6 | 22        |
| 25 | Andreas Oksche. Journal of Biological Rhythms, 2017, 32, 99-100.                                                                                                                                                                           | 2.6 | 0         |
| 26 | Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiology International, 2017, 34, 129-137.                                                                                    | 2.0 | 25        |
| 27 | Melatonin Receptor 1 Deficiency Affects Feeding Dynamics and Pro-Opiomelanocortin <b><br/></b> Expression in the Arcuate Nucleus and Pituitary of Mice. Neuroendocrinology, 2017, 105, 35-43.                                              | 2.5 | 18        |
| 28 | On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3. Brain Pathology, 2017, 27, 345-355.                                                                  | 4.1 | 36        |
| 29 | The Role of the Melatoninergic System in Light-Entrained Behavior of Mice. International Journal of<br>Molecular Sciences, 2017, 18, 530.                                                                                                  | 4.1 | 21        |
| 30 | Hierarchical Distribution of the Tau Cytoskeletal Pathology in the Thalamus ofÂAlzheimer's Disease<br>Patients. Journal of Alzheimer's Disease, 2016, 49, 905-915.                                                                         | 2.6 | 24        |
| 31 | Precortical Phase of Alzheimer's Disease ( <scp>AD</scp> )â€Related Tau Cytoskeletal Pathology. Brain<br>Pathology, 2016, 26, 371-386.                                                                                                     | 4.1 | 112       |
| 32 | <scp>H</scp> untington's disease ( <scp>HD</scp> ): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathology, 2016, 26, 726-740.                                                                 | 4.1 | 144       |
| 33 | Circadian Physiology. , 2016, , 2203-2239.                                                                                                                                                                                                 |     | 1         |
| 34 | Polyglutamine aggregation in <scp>H</scp> untington's disease and spinocerebellar ataxia type 3:<br>similar mechanisms in aggregate formation. Neuropathology and Applied Neurobiology, 2016, 42,<br>153-166.                              | 3.2 | 40        |
| 35 | Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation. Neuroendocrinology, 2016, 103, 605-615.                                                                                                                       | 2.5 | 5         |
| 36 | Melatonin receptor deficiency decreases and temporally shifts ecto-5′-nucleotidase mRNA levels in<br>mouse prosencephalon. Cell and Tissue Research, 2016, 365, 147-156.                                                                   | 2.9 | 7         |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Brainstem Tau Cytoskeletal Pathology of Alzheimer's Disease: A Brief Historical Overview and<br>Description of its Anatomical Distribution Pattern, Evolutional Features, Pathogenetic and Clinical<br>Relevance. Current Alzheimer Research, 2016, 13, 1178-1197. | 1.4 | 56        |
| 38 | Huntington's Disease (HD): Neurodegeneration of Brodmann's Primary Visual Area 17 (BA17). Brain<br>Pathology, 2015, 25, 701-711.                                                                                                                                       | 4.1 | 25        |
| 39 | The Brainstem Pathologies of Parkinson's Disease and Dementia with Lewy Bodies. Brain Pathology, 2015, 25, 121-135.                                                                                                                                                    | 4.1 | 214       |
| 40 | Owls and Larks in Mice. Frontiers in Neurology, 2015, 6, 101.                                                                                                                                                                                                          | 2.4 | 17        |
| 41 | Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and<br>melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes. Cell and Tissue<br>Research, 2015, 362, 163-176.                                             | 2.9 | 11        |
| 42 | Impact of Melatonin on Zeitgeber Time-Dependent Changes in Cell Proliferation and Apoptosis in the Adult Murine Hypothalamic-Hypophyseal System. Neuroendocrinology, 2015, 102, 311-326.                                                                               | 2.5 | 7         |
| 43 | Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel<br>Transmitter Metabolism. Neurochemical Research, 2015, 40, 2402-2413.                                                                                                  | 3.3 | 49        |
| 44 | Irradiation with X-rays phase-advances the molecular clockwork in liver, adrenal gland and pancreas.<br>Chronobiology International, 2015, 32, 27-36.                                                                                                                  | 2.0 | 5         |
| 45 | Improving Drug Penetrability with iRGD Leverages the Therapeutic Response to Sorafenib and Doxorubicin in Hepatocellular Carcinoma. Cancer Research, 2015, 75, 3147-3154.                                                                                              | 0.9 | 56        |
| 46 | Rhythmic control of endocannabinoids in the rat pineal gland. Chronobiology International, 2015, 32, 869-874.                                                                                                                                                          | 2.0 | 6         |
| 47 | No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain, 2015, 138, 3316-3326.                                                                                                                                   | 7.6 | 54        |
| 48 | Intraneuronal Transport and Defense Mechanisms with Possible Pathogenetic Relevance in<br>Huntington's Disease (HD). Advances in Anatomy, Embryology and Cell Biology, 2015, , 91-100.                                                                                 | 1.6 | 0         |
| 49 | The Neuropathological Grading of Huntington's Disease (HD). Advances in Anatomy, Embryology and<br>Cell Biology, 2015, , 7-23.                                                                                                                                         | 1.6 | 4         |
| 50 | The Cerebral Cortex in Huntington's Disease (HD). Advances in Anatomy, Embryology and Cell Biology,<br>2015, , 25-39.                                                                                                                                                  | 1.6 | 1         |
| 51 | The Neuropathology of Huntington's Disease: Classical Findings, Recent Developments and<br>Correlation to Functional Neuroanatomy. Advances in Anatomy, Embryology and Cell Biology, 2015, , .                                                                         | 1.6 | 31        |
| 52 | Notes on the history of the Dr. Senckenbergische Anatomie in Frankfurt/Main. Part I. Development of student numbers, body procurement, and gross anatomy courses from 1914 to 2013. Annals of Anatomy, 2015, 201, 99-110.                                              | 1.9 | 6         |
| 53 | Notes on the history of the Dr. Senckenbergische Anatomie in Frankfurt/Main. Part II. The Dr.<br>Senckenbergische Anatomie during the Third Reich and its body supply. Annals of Anatomy, 2015, 201,<br>111-119.                                                       | 1.9 | 4         |
| 54 | Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated<br>human serum albumin nanoparticles in T1 magnetic resonance imaging. Journal of Controlled Release,<br>2015, 199, 63-71.                                           | 9.9 | 29        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chronotype and stability of spontaneous locomotor activity rhythm in BMAL1-deficient mice.<br>Chronobiology International, 2015, 32, 81-91.                                                                                                          | 2.0 | 19        |
| 56 | Pathological Nerve Cell Alterations in Huntington's Disease (HD) and Their Possible Role for the Demise of Nerve Cells. Advances in Anatomy, Embryology and Cell Biology, 2015, , 119-123.                                                           | 1.6 | 1         |
| 57 | Degeneration of Select Motor and Limbic Nuclei of the Thalamus in Huntington's Disease (HD).<br>Advances in Anatomy, Embryology and Cell Biology, 2015, , 41-53.                                                                                     | 1.6 | 1         |
| 58 | Consistent and Widespread Degeneration of the Cerebellum in Huntington's Disease (HD). Advances in<br>Anatomy, Embryology and Cell Biology, 2015, , 55-66.                                                                                           | 1.6 | 1         |
| 59 | Elucidation of the Role of the Premotor Oculomotor Brainstem Nuclei in the Pathogenesis of<br>Oculomotor Dysfunctions in Huntington's Disease (HD). Advances in Anatomy, Embryology and Cell<br>Biology, 2015, , 67-82.                              | 1.6 | Ο         |
| 60 | Widespread Brainstem Neurodegeneration in Huntington's Disease (HD). Advances in Anatomy,<br>Embryology and Cell Biology, 2015, , 83-90.                                                                                                             | 1.6 | 1         |
| 61 | 2-Arachidonoyl glycerol sensitizes the pars distalis and enhances forskolin-stimulated prolactin secretion in Syrian hamsters. Chronobiology International, 2014, 31, 337-342.                                                                       | 2.0 | 11        |
| 62 | First pathoâ€anatomical investigation of the brain of a <scp>SCA</scp> 19 patient. Neuropathology and Applied Neurobiology, 2014, 40, 640-644.                                                                                                       | 3.2 | 8         |
| 63 | Chronotypes and rhythm stability in mice. Chronobiology International, 2014, 31, 27-36.                                                                                                                                                              | 2.0 | 30        |
| 64 | <scp>H</scp> untington's <scp>D</scp> isease ( <scp>HD</scp> ): Degeneration of Select Nuclei,<br>Widespread Occurrence of Neuronal Nuclear and Axonal Inclusions in the Brainstem. Brain<br>Pathology, 2014, 24, 247-260.                           | 4.1 | 51        |
| 65 | Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Progress in Neurobiology, 2013, 104, 38-66.                                                                                  | 5.7 | 283       |
| 66 | Circadian Physiology. , 2013, , 1813-1845.                                                                                                                                                                                                           |     | 8         |
| 67 | Melatonin-receptor-1-deficiency affects neurogenic differentiation factor immunoreaction in pancreatic islets and enteroendocrine cells of mice. Cell and Tissue Research, 2013, 353, 483-491.                                                       | 2.9 | 1         |
| 68 | Melatonin-induced changes in the expression of thyroid hormone-converting enzymes in<br>hypothalamus depend on the timing of melatonin injections and genetic background in mice. General<br>and Comparative Endocrinology, 2013, 186, 33-40.        | 1.8 | 7         |
| 69 | Involvement of the cholinergic basal forebrain nuclei in spinocerebellar ataxia type 2<br>( <scp>SCA</scp> 2). Neuropathology and Applied Neurobiology, 2013, 39, 634-643.                                                                           | 3.2 | 16        |
| 70 | Degeneration of the Cerebellum in <scp>H</scp> untington's Disease ( <scp>HD</scp> ): Possible<br>Relevance for the Clinical Picture and Potential Gateway to Pathological Mechanisms of the Disease<br>Process. Brain Pathology, 2013, 23, 165-177. | 4.1 | 119       |
| 71 | When does it start ticking? Ontogenetic development of the mammalian circadian system. Progress in<br>Brain Research, 2012, 199, 105-118.                                                                                                            | 1.4 | 30        |
| 72 | Pathoanatomy of Cerebellar Degeneration in Spinocerebellar Ataxia Type 2 (SCA2) and Type 3 (SCA3).<br>Cerebellum, 2012, 11, 749-760.                                                                                                                 | 2.5 | 83        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Disturbed sleep/wake rhythms and neuronal cell loss in lateral hypothalamus and retina of mice with<br>a spontaneous deletion in the ubiquitin carboxyl-terminal hydrolase L1 gene. Neurobiology of Aging,<br>2012, 33, 393-403.             | 3.1 | 20        |
| 74 | Spinocerebellar ataxia type 1 (SCA1): new pathoanatomical and clinicoâ€pathological insights.<br>Neuropathology and Applied Neurobiology, 2012, 38, 665-680.                                                                                 | 3.2 | 66        |
| 75 | The Endogenous Melatonin (MT) Signal Facilitates Reentrainment of the Circadian System to<br>Light-Induced Phase Advances by Acting Upon MT2 Receptors. Chronobiology International, 2012, 29,<br>415-429.                                   | 2.0 | 60        |
| 76 | Brain pathology of spinocerebellar ataxias. Acta Neuropathologica, 2012, 124, 1-21.                                                                                                                                                          | 7.7 | 337       |
| 77 | Molecular Cellular Mechanisms of Peptide Regulation of Melatonin Synthesis in Pinealocyte Culture.<br>Bulletin of Experimental Biology and Medicine, 2012, 153, 255-258.                                                                     | 0.8 | 17        |
| 78 | Tafa-3 encoding for a secretory peptide is expressed in the mouse pars tuberalis and is affected by melatonin 1 receptor deficiency. General and Comparative Endocrinology, 2012, 177, 98-103.                                               | 1.8 | 12        |
| 79 | Klaus Unsicker: in honor of his seventieth birthday. Cell and Tissue Research, 2012, 347, 1-2.                                                                                                                                               | 2.9 | 2         |
| 80 | The hypophysial pars tuberalis transduces photoperiodic signals via multiple pathways and messenger molecules. General and Comparative Endocrinology, 2011, 172, 15-22.                                                                      | 1.8 | 34        |
| 81 | Spinocerebellar Ataxia Type 2 (SCA2): Identification of Early Brain Degeneration in One Monozygous<br>Twin in the Initial Disease Stage. Cerebellum, 2011, 10, 245-253.                                                                      | 2.5 | 26        |
| 82 | Palmitoylethanolamide Protects Dentate Gyrus Granule Cells via Peroxisome Proliferator-Activated<br>Receptor-Alpha. Neurotoxicity Research, 2011, 19, 330-340.                                                                               | 2.7 | 42        |
| 83 | The cannabinoid WIN 55,212â€2â€mediated protection of dentate gyrus granule cells is driven by CB <sub>1</sub> receptors and modulated by TRPA1 and Ca <sub>v</sub> 2.2 channels. Hippocampus, 2011, 21, 554-564.                            | 1.9 | 37        |
| 84 | Analyses of neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures.<br>Annals of Anatomy, 2010, 192, 199-204.                                                                                                    | 1.9 | 14        |
| 85 | An endocannabinoid system is localized to the hypophysial pars tuberalis of Syrian hamsters and responds to photoperiodic changes. Cell and Tissue Research, 2010, 340, 127-136.                                                             | 2.9 | 24        |
| 86 | Localization of an endocannabinoid system in the hypophysial pars tuberalis and pars distalis of man.<br>Cell and Tissue Research, 2010, 342, 273-281.                                                                                       | 2.9 | 19        |
| 87 | Spatial and temporal expression patterns of <i>Bmal</i> delineate a circadian clock in the nervous<br>system of <i>Branchiostoma lanceolatum</i> . Journal of Comparative Neurology, 2010, 518, 1837-1846.                                   | 1.6 | 7         |
| 88 | Melatonin receptor 1-dependent gene expression in the mouse pars tuberalis as revealed by cDNA<br>microarray analysis and <i>in situ</i> hybridization. Journal of Pineal Research, 2010, 48, 148-156.                                       | 7.4 | 28        |
| 89 | Inhibition of microglial and astrocytic inflammatory responses by the immunosuppressant<br>mycophenolate mofetil. Neuropathology and Applied Neurobiology, 2010, 36, 598-611.                                                                | 3.2 | 13        |
| 90 | Photoperiodic Control of <i>TSHâ€Î²</i> Expression in the Mammalian Pars Tuberalis has Different<br>Impacts on the Induction and Suppression of the Hypothalamoâ€Hypopysial Gonadal Axis. Journal of<br>Neuroendocrinology, 2010, 22, 43-50. | 2.6 | 49        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Pineal melatonin synthesis is altered in Period1 deficient mice. Neuroscience, 2010, 171, 398-406.                                                                                                              | 2.3 | 35        |
| 92  | Rainer Klinke (1936-2008). E-Neuroforum, 2009, 15, 64-64.                                                                                                                                                       | 0.1 | 0         |
| 93  | The Mammalian Molecular Clockwork Controls Rhythmic Expression of Its Own Input Pathway<br>Components. Journal of Neuroscience, 2009, 29, 6114-6123.                                                            | 3.6 | 46        |
| 94  | Melatonin Transmits Photoperiodic Signals through the MT1 Melatonin Receptor. Journal of Neuroscience, 2009, 29, 2885-2889.                                                                                     | 3.6 | 106       |
| 95  | Impact of Melatonin and Molecular Clockwork Components on the Expression of Thyrotropin β-Chain<br>(Tshb) and the Tsh Receptor in the Mouse Pars Tuberalis. Endocrinology, 2009, 150, 4653-4662.                | 2.8 | 48        |
| 96  | 2â€Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus<br>granule cells via abnormalâ€cannabidiolâ€sensitive receptors on microglial cells. Glia, 2009, 57, 286-294. | 4.9 | 80        |
| 97  | Differential maturation of circadian rhythms in clock gene proteins in the suprachiasmatic nucleus and the pars tuberalis during mouse ontogeny. European Journal of Neuroscience, 2009, 29, 477-489.           | 2.6 | 58        |
| 98  | Cocultures of Rat Sensorimotor Cortex and Spinal Cord Slices to Investigate Corticospinal Tract<br>Sprouting. Spine, 2009, 34, 2494-2499.                                                                       | 2.0 | 8         |
| 99  | The pituitary adenylate cyclase-activating polypeptide modulates glutamatergic calcium signalling:<br>investigations on rat suprachiasmatic nucleus neurons. Journal of Neurochemistry, 2008, 79, 161-171.      | 3.9 | 45        |
| 100 | Successful inhibition of excitotoxic neuronal damage and microglial activation after delayed<br>application of interleukinâ€1 receptor antagonist. Journal of Neuroscience Research, 2008, 86, 3314-3321.       | 2.9 | 28        |
| 101 | The dissection course – necessary and indispensable for teaching anatomy to medical students. Annals of Anatomy, 2008, 190, 16-22.                                                                              | 1.9 | 245       |
| 102 | The rat pineal gland comprises an endocannabinoid system. Journal of Pineal Research, 2008, 45, 351-360.                                                                                                        | 7.4 | 18        |
| 103 | Rhythmic expression of clock genes in the ependymal cell layer of the third ventricle of rodents is independent of melatonin signaling. European Journal of Neuroscience, 2008, 28, 2443-2450.                  | 2.6 | 12        |
| 104 | Nocturnal Behavior and Rhythmic <i>Period</i> Gene Expression in a Lancelet, <i>Branchiostoma<br/>lanceolatum</i> . Journal of Biological Rhythms, 2008, 23, 170-181.                                           | 2.6 | 11        |
| 105 | Abrupt Shift of the Pattern of Diurnal Variation in Stroke Onset With Daylight Saving Time<br>Transitions. Circulation, 2008, 118, 284-290.                                                                     | 1.6 | 32        |
| 106 | Involvement of thyrotropin in photoperiodic signal transduction in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18238-18242.                               | 7.1 | 242       |
| 107 | Temporal Dynamics of Type 2 Deiodinase Expression after Melatonin Injections in Syrian Hamsters.<br>Endocrinology, 2007, 148, 4385-4392.                                                                        | 2.8 | 74        |
| 108 | The impact of CREB and its phosphorylation at Ser142 on inflammatory nociception. Biochemical and<br>Biophysical Research Communications, 2007, 362, 75-80.                                                     | 2.1 | 11        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Cannabinoids and neuronal damage: Differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures. Experimental Neurology, 2007, 203, 246-257.           | 4.1 | 41        |
| 110 | Clock gene expression in the retina of melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice.<br>Journal of Pineal Research, 2007, 42, 83-91.                                                                                                          | 7.4 | 44        |
| 111 | Einheit und Vielheit - Unity and Plurality. Annals of Anatomy, 2007, 189, 535-548.                                                                                                                                                                               | 1.9 | 1         |
| 112 | Impact of melatonin receptors on pCREB and clock-gene protein levels in the murine retina. Cell and Tissue Research, 2007, 330, 29-34.                                                                                                                           | 2.9 | 26        |
| 113 | Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development (Cambridge), 2006, 133, 675-684.                                                                                        | 2.5 | 193       |
| 114 | Mice, melatonin and the circadian system. Molecular and Cellular Endocrinology, 2006, 252, 57-68.                                                                                                                                                                | 3.2 | 44        |
| 115 | Targeted deletions of Mel1a and Mel1b melatonin receptors affect pCREB levels in lactotroph and pars intermedia cells of mice. Neuroscience Letters, 2006, 407, 48-52.                                                                                           | 2.1 | 10        |
| 116 | Cannabinoids attenuate norepinephrineâ€induced melatonin biosynthesis in the rat pineal gland by<br>reducing arylalkylamine <i>N</i> â€acetyltransferase activity without involvement of cannabinoid<br>receptors. Journal of Neurochemistry, 2006, 98, 267-278. | 3.9 | 22        |
| 117 | Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine<br>adrenal gland: differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice.<br>Journal of Pineal Research, 2006, 40, 64-70.          | 7.4 | 60        |
| 118 | The immunosuppressant mycophenolate mofetil improves preservation of the perforant path in organotypic hippocampal slice cultures: A retrograde tracing study. Hippocampus, 2006, 16, 437-442.                                                                   | 1.9 | 8         |
| 119 | Characterization of Human Melatonin Synthesis Using Autoptic Pineal Tissue. Endocrinology, 2006, 147, 3235-3242.                                                                                                                                                 | 2.8 | 31        |
| 120 | Melatonin Plays a Crucial Role in the Regulation of Rhythmic Clock Gene Expression in the Mouse Pars<br>Tuberalis. Annals of the New York Academy of Sciences, 2005, 1040, 508-511.                                                                              | 3.8 | 118       |
| 121 | Mechanisms Regulating Melatonin Synthesis in the Mammalian Pineal Organ. Annals of the New York<br>Academy of Sciences, 2005, 1057, 372-383.                                                                                                                     | 3.8 | 108       |
| 122 | The Rhythm and Blues of Gene Expression in the Rodent Pineal Gland. Endocrine, 2005, 27, 089-100.                                                                                                                                                                | 2.2 | 29        |
| 123 | Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. Journal of Neurochemistry, 2005, 92, 158-170.                                                     | 3.9 | 174       |
| 124 | Interleukin-1β exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and<br>microglial activation after excitotoxic damage in organotypic hippocampal slice cultures. European<br>Journal of Neuroscience, 2005, 21, 2347-2360.           | 2.6 | 85        |
| 125 | Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling.<br>European Journal of Neuroscience, 2005, 22, 2845-2854.                                                                                                     | 2.6 | 80        |
| 126 | Characterisation of transverse slice culture preparations of postnatal rat spinal cord: preservation of defined neuronal populations. Histochemistry and Cell Biology, 2005, 123, 377-392.                                                                       | 1.7 | 25        |

| #   | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Diurnal variation in CREB phosphorylation and PER1 protein levels in lactotroph cells of<br>melatonin-proficient C3H and melatonin-deficient C57BL mice: similarities and differences. Cell and<br>Tissue Research, 2005, 321, 211-217.                                     | 2.9  | 6         |
| 128 | Activation of Arylalkylamine N-Acetyltransferase by Phorbol Esters in Bovine Pinealocytes Suggests a<br>Novel Regulatory Pathway in Melatonin Synthesis. Journal of Neuroendocrinology, 2004, 16, 741-749.                                                                  | 2.6  | 6         |
| 129 | Clock gene mRNA and protein rhythms in the pineal gland of mice. European Journal of Neuroscience, 2004, 19, 3382-3388.                                                                                                                                                     | 2.6  | 43        |
| 130 | The public cadaver. Nature, 2004, 428, 805-805.                                                                                                                                                                                                                             | 27.8 | 8         |
| 131 | Distribution of transcription factor inducible cyclicAMP early repressor (ICER) in rodent brain and pituitary. Journal of Comparative Neurology, 2004, 478, 379-394.                                                                                                        | 1.6  | 13        |
| 132 | Clodronate inhibits the secretion of proinflammatory cytokines and NO by isolated microglial cells<br>and reduces the number of proliferating glial cells in excitotoxically injured organotypic<br>hippocampal slice cultures. Experimental Neurology, 2004, 189, 241-251. | 4.1  | 43        |
| 133 | Cytoarchitecture, topography, and descending supraspinal projections in the anterior central nervous system ofBranchiostoma lanceolatum. Journal of Comparative Neurology, 2003, 466, 319-330.                                                                              | 1.6  | 12        |
| 134 | Norepinephrine-dependent phosphorylation of the transcription factor cyclic adenosine<br>monophosphate responsive element-binding protein in bovine pinealocytes. Journal of Pineal Research,<br>2003, 34, 103-109.                                                         | 7.4  | 10        |
| 135 | Melatonin: A Clockâ€Output, A Clockâ€Input. Journal of Neuroendocrinology, 2003, 15, 383-389.                                                                                                                                                                               | 2.6  | 157       |
| 136 | Dephosphorylation of pCREB by protein serine/threonine phosphatases is involved in inactivation of <i>Aanat</i> gene transcription in rat pineal gland. Journal of Neurochemistry, 2003, 85, 170-179.                                                                       | 3.9  | 33        |
| 137 | The immunosuppressant mycophenolate mofetil attenuates neuronal damage after excitotoxic injury<br>in hippocampal slice cultures. European Journal of Neuroscience, 2003, 18, 1061-1072.                                                                                    | 2.6  | 37        |
| 138 | The bisphosphonate clodronate depletes microglial cells in excitotoxically injured organotypic hippocampal slice cultures. Experimental Neurology, 2003, 181, 1-11.                                                                                                         | 4.1  | 51        |
| 139 | Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Molecular and Cellular Neurosciences, 2003, 24, 419-429.                                                                                      | 2.2  | 189       |
| 140 | The Circadian System and Melatonin: Lessons from Rats and Mice. Chronobiology International, 2003, 20, 697-710.                                                                                                                                                             | 2.0  | 31        |
| 141 | Age-dependent hypothalamic expression of neuropeptides in wild-type and melanocortin-4 receptor-deficient mice. Physiological Genomics, 2003, 16, 38-46.                                                                                                                    | 2.3  | 11        |
| 142 | Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice. Journal of Physiology, 2003, 547, 317-332.                                                                                        | 2.9  | 61        |
| 143 | Phosphorylation of CREB Ser142 Regulates Light-Induced Phase Shifts of the Circadian Clock. Neuron, 2002, 34, 245-253.                                                                                                                                                      | 8.1  | 233       |
| 144 | Protein kinase G I immunoreaction is colocalized with arginine-vasopressin immunoreaction in the rat suprachiasmatic nucleus. Neuroscience Letters, 2002, 334, 119-122.                                                                                                     | 2.1  | 15        |

| #   | Article                                                                                                                                                                                                                                                   | IF          | CITATIONS     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| 145 | Light-Dark and Circadian Melatonin Rhythms Are Established de novo in Re-Aggregates of the<br>Embryonic Chicken Retina. Developmental Neuroscience, 2002, 24, 504-511.                                                                                    | 2.0         | 6             |
| 146 | Interleukin-4, interleukin-10, and interleukin-1-receptor antagonist but not transforming growth<br>factor-? induce ramification and reduce adhesion molecule expression of rat microglial cells. Journal<br>of Neuroscience Research, 2002, 68, 579-587. | 2.9         | 56            |
| 147 | Transcription factor CREB and its stimulus-dependent phosphorylation in cell and explant cultures of the bovine subcommissural organ. Cell and Tissue Research, 2002, 308, 131-142.                                                                       | 2.9         | 10            |
| 148 | Organisation of the circadian system in melatonin-proficient C3H and melatonin-deficient C57BL mice: a comparative investigation. Cell and Tissue Research, 2002, 309, 173-182.                                                                           | 2.9         | 54            |
| 149 | The circadian system: circuits-cells-clock genes. Cell and Tissue Research, 2002, 309, 1-2.                                                                                                                                                               | 2.9         | 21            |
| 150 | Signal transduction and regulation of melatonin synthesis in bovine pinealocytes: impact of adrenergic, peptidergic and cholinergic stimuli. Cell and Tissue Research, 2002, 309, 417-428.                                                                | 2.9         | 18            |
| 151 | Effects of neuroactive substances on the activity of subcommissural organ cells in dispersed cell and explant cultures. Cell and Tissue Research, 2002, 307, 101-114.                                                                                     | 2.9         | 14            |
| 152 | Analyses of Signal Transduction Cascades Reveal an Essential Role of Calcium Ions for Regulation of<br>Melatonin Biosynthesis in the Light-Sensitive Pineal Organ of the Rainbow Trout (Oncorhynchus) Tj ETQq0 0 0                                        | rgBT3/Øverl | och1810 Tf 50 |
| 153 | Selective Adrenergic/Cyclic AMP-Dependent Switch-Off of Proteasomal Proteolysis Alone Switches on Neural Signal Transduction. Journal of Neurochemistry, 2002, 75, 2123-2132.                                                                             | 3.9         | 75            |
| 154 | Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nature Neuroscience, 2002, 5, 234-238.                                                                                                         | 14.8        | 235           |
| 155 | Distribution of regulatory subunits of protein kinase A and A kinase anchor proteins (AKAP 95, 150) in rat pinealocytes. Cell and Tissue Research, 2002, 310, 331-338.                                                                                    | 2.9         | 6             |
| 156 | Clock Gene Protein mPER1 is Rhythmically Synthesized and Under cAMP Control in the Mouse Pineal Organ. Journal of Neuroendocrinology, 2001, 13, 313-316.                                                                                                  | 2.6         | 44            |
| 157 | Direct comparison of the potency of three novel cAMP analogs to induce CREB-phosphorylation in rat pinealocytes. Journal of Pineal Research, 2001, 31, 183-185.                                                                                           | 7.4         | 6             |
| 158 | Analysis of cell signalling in the rodent pineal gland deciphers regulators of dynamic transcription in neural/endocrine cells*. European Journal of Neuroscience, 2001, 14, 1-9.                                                                         | 2.6         | 39            |
| 159 | Astrocytic factors protect neuronal integrity and reduce microglial activation in anin vitromodel<br>ofN-methyl-d-aspartate-induced excitotoxic injury in organotypic hippocampal slice cultures.<br>European Journal of Neuroscience, 2001, 14, 315-326. | 2.6         | 64            |
| 160 | cAMP Regulation of ArylalkylamineN-Acetyltransferase (AANAT, EC 2.3.1.87). Journal of Biological<br>Chemistry, 2001, 276, 24097-24107.                                                                                                                    | 3.4         | 39            |
| 161 | Of Rodents and Ungulates and Melatonin: Creating a Uniform Code for Darkness by Different<br>Signaling Mechanisms. Journal of Biological Rhythms, 2001, 16, 312-325.                                                                                      | 2.6         | 73            |
| 162 | Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a receptor.<br>NeuroReport, 2000, 11, 1803-1807.                                                                                                                      | 1.2         | 61            |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a<br>comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. European<br>Journal of Neuroscience, 2000, 12, 964-972. | 2.6 | 84        |
| 164 | Antisense experiments reveal molecular details on mechanisms of ICER suppressing cAMP-inducible genes in rat pinealocytes. Journal of Pineal Research, 2000, 29, 24-33.                                                                       | 7.4 | 25        |
| 165 | Neurofilament H immunoreaction in oligodendrogliomas as demonstrated by a new polyclonal antibody. Acta Neuropathologica, 2000, 100, 122-130.                                                                                                 | 7.7 | 12        |
| 166 | Cholinergic signal transduction cascades in rat pinealocytes: functional and ontogenetic aspects.<br>Reproduction, Nutrition, Development, 1999, 39, 305-314.                                                                                 | 1.9 | 4         |
| 167 | Transcription Factors in Neuroendocrine Regulation: Rhythmic Changes in pCREB and ICER Levels<br>Frame Melatonin Synthesis. Journal of Neuroscience, 1999, 19, 3326-3336.                                                                     | 3.6 | 118       |
| 168 | Inducible Cyclic AMP Early Repressor Protein in Rat Pinealocytes: A Highly Sensitive Natural Reporter for Regulated Gene Transcription. Molecular Pharmacology, 1999, 56, 279-289.                                                            | 2.3 | 38        |
| 169 | Pituitary Adenylate Cyclase-Activating Polypeptide and Melatonin in the Suprachiasmatic Nucleus:<br>Effects on the Calcium Signal Transduction Cascade. Journal of Neuroscience, 1999, 19, 206-219.                                           | 3.6 | 61        |
| 170 | A Semiquantitative Image-analytical Method for the Recording of Dose-Response Curves in<br>Immunocytochemical Preparations. Journal of Histochemistry and Cytochemistry, 1999, 47, 411-419.                                                   | 2.5 | 36        |
| 171 | CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: Involvement of cyclic AMP dependent protein kinase type II. Journal of Pineal Research, 1999, 27, 170-182.                                                           | 7.4 | 53        |
| 172 | Analyses of signal transduction cascades in rat pinealocytes reveal a switch in cholinergic signaling during postnatal development. Brain Research, 1999, 833, 39-50.                                                                         | 2.2 | 11        |
| 173 | Pineal nitric oxide synthase, but not heme oxygenase, mRNA is suppressed by continuous exposure to<br>light. Molecular Brain Research, 1999, 70, 264-272.                                                                                     | 2.3 | 5         |
| 174 | Rhythmic variation in β1-adrenergic receptor mRNA levels in the rat pineal gland: circadian and developmental regulation. European Journal of Neuroscience, 1998, 10, 2896-2904.                                                              | 2.6 | 34        |
| 175 | Prognostic implication of histopathological, immunohistochemical and clinical features of oligodendrogliomas: a study of 89 cases. Acta Neuropathologica, 1998, 95, 493-504.                                                                  | 7.7 | 104       |
| 176 | Immunohistochemical, ultrastructural, biochemical and in vitro studies of a pineocytoma. Acta<br>Neuropathologica, 1998, 95, 532-539.                                                                                                         | 7.7 | 34        |
| 177 | Morphological and immunocytochemical features of the pineal organ of C3H and C57BL mice at different stages of postnatal development. Cell and Tissue Research, 1998, 292, 521-530.                                                           | 2.9 | 8         |
| 178 | Confocal laser scanning and electron-microscopic analyses of the relationship between VIP-like and<br>GnRH-like-immunoreactive neurons in the lateral septal-preoptic area of the pigeon. Cell and Tissue<br>Research, 1998, 293, 39-46.      | 2.9 | 23        |
| 179 | CREB in the Mouse SCN: A Molecular Interface Coding the Phase-Adjusting Stimuli Light, Glutamate, PACAP, and Melatonin for Clockwork Access. Journal of Neuroscience, 1998, 18, 10389-10397.                                                  | 3.6 | 143       |
| 180 | Rhythmic variation in beta1-adrenergic receptor mRNA levels in the rat pineal gland: circadian and developmental regulation. European Journal of Neuroscience, 1998, 10, 2896-2904.                                                           | 2.6 | 1         |

| #   | Article                                                                                                                                                                                                                                                                                         | IF       | CITATIONS       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
| 181 | Stimulation of a nicotinic ACh receptor causes depolarization and activation of Lâ€type Ca2+ channels<br>in rat pinealocytes Journal of Physiology, 1997, 499, 329-340.                                                                                                                         | 2.9      | 47              |
| 182 | Regulation of the Intracellular Concentration of Free Calcium Ions in Pinealocytes of the Rainbow<br>Trout and the Rat. NeuroSignals, 1997, 6, 201-211.                                                                                                                                         | 0.9      | 5               |
| 183 | The pituitary adenylate cyclase-activating polypeptide-induced phosphorylation of the transcription factor CREB (cAMP response element binding protein) in the rat suprachiasmatic nucleus is inhibited by melatonin. Neuroscience Letters, 1997, 227, 145-148.                                 | 2.1      | 60              |
| 184 | Calcium oscillations in a subpopulation of S-antigen-immunoreactive pinealocytes of the rainbow trout (Oncorhynchus mykiss). Brain Research, 1997, 744, 68-76.                                                                                                                                  | 2.2      | 19              |
| 185 | Control of CREB phosphorylation and its role for induction of melatonin synthesis in rat pinealocytes*. Biology of the Cell, 1997, 89, 505-511.                                                                                                                                                 | 2.0      | 38              |
| 186 | Comparative investigations of the neuronal apparatus in the pineal organ and retina of the rainbow trout: immunocytochemical demonstration of neurofilament 200-kDa and neuropeptide Y, and tracing with Dil. Cell and Tissue Research, 1997, 288, 417-425.                                     | 2.9      | 17              |
| 187 | Light-induced expression of transcription factor ICER (inducible cAMP early repressor) in rat suprachiasmatic nucleus is phase-restricted. Neuroscience Letters, 1996, 217, 169-172.                                                                                                            | 2.1      | 24              |
| 188 | A possible homologue of the suprachiasmatic nucleus in the hypothalamus of lampreys (Lampetra) Tj ETQq0 0 C                                                                                                                                                                                     | rgBT/Ove | erlock 10 Tf 50 |
| 189 | Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) induce phosphorylation of the transcription factor CREB in subpopulations of rat pinealocytes: immunocytochemical and immunochemical evidence. Cell and Tissue Research, 1996, 286, 305-313. | 2.9      | 59              |
| 190 | Regulation of melatonin production and intracellular calcium concentrations in the trout pineal organ. Cell and Tissue Research, 1996, 286, 315-323.                                                                                                                                            | 2.9      | 26              |
| 191 | Differential immunocytochemical localization of calretinin in the pineal gland of three mammalian species. Journal of Neurocytology, 1996, 25, 9-18.                                                                                                                                            | 1.5      | 21              |
| 192 | Salinity and Vasotocin Immunoreactivity in the Brain of Rivulus marmoratus (Teleostei). Die<br>Naturwissenschaften, 1996, 83, 326-328.                                                                                                                                                          | 1.6      | 3               |
| 193 | Immunocytochemical demonstration of S-antigen (arrestin) in the brain of the blowfly Calliphora vicina. Cell and Tissue Research, 1995, 279, 109-114.                                                                                                                                           | 2.9      | 23              |
| 194 | Ultrastructure of cerebrospinal fluid-contacting neurons immunoreactive to vasoactive intestinal peptide and properties of the blood-brain barrier in the lateral septal organ of the duck. Cell and Tissue Research, 1995, 279, 123-133.                                                       | 2.9      | 13              |
| 195 | Norepinephrine-induced phosphorylation of the transcription factor CREB in isolated rat pinealocytes: an immunocytochemical study. Cell and Tissue Research, 1995, 282, 219-226.                                                                                                                | 2.9      | 64              |
| 196 | Calcium responses of isolated, immunocytochemically identified rat pinealocytes to noradrenergic, cholinergic and vasopressinergic stimulations. Neurochemistry International, 1995, 27, 163-175.                                                                                               | 3.8      | 70              |
| 197 | Norepinephrine-induced phosphorylation of the transcription factor CREB in isolated rat pinealocytes: an immunocytochemical study. Cell and Tissue Research, 1995, 282, 219-226.                                                                                                                | 2.9      | 8               |
| 198 | An immunocytochemical investigation of glial morphology in the Pacific hagfish: radial and astrocyte-like glia have the same phylogenetic age. Journal of Neurocytology, 1994, 23, 565-576.                                                                                                     | 1.5      | 44              |

198 astrocyte-like glia have the same phylogenetic age. Journal of Neurocytology, 1994, 23, 565-576. 1.5

| #   | Article                                                                                                                                                                                                                                         | IF               | CITATIONS          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 199 | Electron-microscopic investigations of vasoactive intestinal peptide (VIP)-like immunoreactive terminal formations in the lateral septum of the pigeon. Cell and Tissue Research, 1994, 278, 415-418.                                           | 2.9              | 16                 |
| 200 | Morphological and immunocytochemical heterogeneity of cultured pinealocytes from one-week-and<br>two-month-old rats: Planimetric and densitometric investigations. Journal of Pineal Research, 1993, 14,<br>128-137.                            | 7.4              | 18                 |
| 201 | Rod-opsin immunoreaction in the pineal organ of the pigmented mouse does not indicate the presence of a functional photopigment. Cell and Tissue Research, 1993, 274, 71-78.                                                                    | 2.9              | 14                 |
| 202 | Vasoactive intestinal peptide-immunoreactive cerebrospinal fluid-contacting neurons in the reptilian lateral septum nucleus accumbens. Cell and Tissue Research, 1993, 274, 79-90.                                                              | 2.9              | 19                 |
| 203 | Single-cell [Ca2+]i analysis and biochemical characterization of pinealocytes immobilized with novel attachment peptide preparation. Brain Research, 1993, 614, 251-256.                                                                        | 2.2              | 41                 |
| 204 | Concurrent uveoretinitis and pineocytoma in a child suggests a causal relationship British Journal of Ophthalmology, 1992, 76, 574-576.                                                                                                         | 3.9              | 13                 |
| 205 | Recoverin in pineal organs and retinae of various vertebrate species including man. Brain Research, 1992, 595, 57-66.                                                                                                                           | 2.2              | 77                 |
| 206 | Midline brain tumors in MSV-SV 40-transgenic mice originate from the pineal organ. Acta<br>Neuropathologica, 1992, 83, 308-314.                                                                                                                 | 7.7              | 18                 |
| 207 | Immunocytochemical demonstration of interphotoreceptor retinoid-binding protein in cerebellar medulloblastoma. Acta Neuropathologica, 1992, 83, 482-487.                                                                                        | 7.7              | 24                 |
| 208 | Immunocytochemical demonstration of rod-opsin, S-antigen, and neuron-specific proteins in the human pineal gland. Cell and Tissue Research, 1992, 267, 493-498.                                                                                 | 2.9              | 47                 |
| 209 | Photoreceptor differentiation in cerebellar medulloblastoma: evidence for a functional photopigment and authentic S-antigen (arrestin). Acta Neuropathologica, 1991, 81, 296-302.                                                               | 7.7              | 15                 |
| 210 | S-Antigen and Rod-Opsin Immunoreactions in Midline Brain Neoplasms of Transgenic Mice: Similarities<br>to Pineal Cell Tumors and Certain Medulloblastomas in Man. Journal of Neuropathology and<br>Experimental Neurology, 1990, 49, 424-437.   | 1.7              | 34                 |
| 211 | Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin,) Tj ETQq1 1 0.784<br>photoneuroendocrine cells. Cell and Tissue Research, 1990, 262, 205-216.                                                      | 4314 rgBT<br>2.9 | /Overlock 10<br>41 |
| 212 | Complex relationships between the pineal organ and the medial habenular nucleus-pretectal region of<br>the mouse as revealed by S-antigen immunocytochemistry. Cell and Tissue Research, 1990, 261, 493-500.                                    | 2.9              | 40                 |
| 213 | Ontogenetic development of S-antigen- and rodopsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms. Cell and Tissue Research, 1989, 258, 319-29. | 2.9              | 25                 |
| 214 | Differentiation in medulloblastomas: correlation between the immunocytochemical demonstration<br>of photoreceptor markers (S-antigen, rod-opsin) and the survival rate in 66 patients. Acta<br>Neuropathologica, 1989, 78, 629-636.             | 7.7              | 32                 |
| 215 | Immunoreactive S-antigen in cerebrospinal fluid: a marker of pineal parenchymal tumors?. Journal of<br>Neurosurgery, 1989, 70, 682-687.                                                                                                         | 1.6              | 17                 |
| 216 | Thyrotropin-releasing hormone (TRH)-immunoreactive structures in the brain of the domestic mallard. Cell and Tissue Research, 1988, 251, 441-449.                                                                                               | 2.9              | 30                 |

| #   | Article                                                                                                                                                                                                                             | IF                | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 217 | Pinealocytes immunoreactive with antisera against secretory glycoproteins of the subcommissural organ: A comparative study. Cell and Tissue Research, 1988, 254, 469-80.                                                            | 2.9               | 26           |
| 218 | Immunocytochemical evidence of molecular photoreceptor markers in cerebellar medulloblastomas.<br>Cancer, 1987, 60, 1763-1766.                                                                                                      | 4.1               | 42           |
| 219 | Antibodies against retinal photoreceptor-specific proteins reveal axonal projections from the photosensory pineal organ in teleosts. Journal of Comparative Neurology, 1987, 265, 25-33.                                            | 1.6               | 54           |
| 220 | Neural connections between the brain and the pineal gland of the golden hamster (Mesocricetus) Tj ETQq0 0 0 r                                                                                                                       | gBT /Overl<br>2.9 | ock 10 Tf 50 |
| 221 | Growth hormone-releasing factor (GRF)-like immunoreactivity in sensory ganglia of the rat. Cell and Tissue Research, 1987, 247, 441-4.                                                                                              | 2.9               | 7            |
| 222 | Immunocytochemical and electron-microscopic investigations of the pineal organ in adult agamid lizards, Uromastix hardwicki. Cell and Tissue Research, 1987, 250, 571-8.                                                            | 2.9               | 4            |
| 223 | Microvasculature of the pineal organ of the rainbow trout (Salmo gairdneri). Cell and Tissue<br>Research, 1987, 250, 425-9.                                                                                                         | 2.9               | 11           |
| 224 | Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail. Cell and Tissue Research, 1987, 248, 161-167.                                                             | 2.9               | 72           |
| 225 | alpha-Transducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates<br>Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 912-916.                                  | 7.1               | 92           |
| 226 | S-antigen-like immunoreactivity in a human pineocytoma. Acta Neuropathologica, 1986, 69, 165-167.                                                                                                                                   | 7.7               | 44           |
| 227 | Putative cholinergic elements in the photosensory pineal organ and retina of a teleost, Phoxinus phoxinus L. (Cyprinidae). Cell and Tissue Research, 1986, 246, 321-329.                                                            | 2.9               | 35           |
| 228 | Substance P-like-immunoreactive neurons in the photosensory pineal organ of the rainbow trout,<br>Salmo gairdneri Richardson (Teleostei). Cell and Tissue Research, 1986, 246, 359-364.                                             | 2.9               | 17           |
| 229 | Golgi-type and immunocytochemical studies on the intrinsic organization of the periventricular layer of the avian paraventricular nucleus. Cell and Tissue Research, 1986, 243, 317.                                                | 2.9               | 14           |
| 230 | Pinealocyte projections into the mammalian brain revealed with S-antigen antiserum. Science, 1986, 231, 735-737.                                                                                                                    | 12.6              | 94           |
| 231 | Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell and Tissue Research, 1985, 239, 81-85.                                                                                    | 2.9               | 132          |
| 232 | Pineal neurons projecting to the brain of the rainbow trout, Salmo gairdneri Richardson (Teleostei).<br>Cell and Tissue Research, 1985, 240, 693-700.                                                                               | 2.9               | 35           |
| 233 | The presence of vasoactive intestinal polypeptide (VIP)-like-immunoreactive nerve fibres and<br>VIP-receptors in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Cell and Tissue<br>Research, 1985, 241, 333-340. | 2.9               | 55           |
| 234 | Vascular permeability (problem of the blood-brain barrier) in the pineal organ of the rainbow trout,<br>Salmo gairdneri. Cell and Tissue Research, 1985, 239, 599-610.                                                              | 2.9               | 16           |

| #   | Article                                                                                                                                                                                                                                 | IF                 | CITATIONS           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 235 | Opsin-like immunoreaction in the retinae and pineal organs of four mammalian species. Cell and Tissue<br>Research, 1985, 242, 645-8.                                                                                                    | 2.9                | 84                  |
| 236 | Ependymal and neuronal specializations in the lateral ventricle of the Pekin duck, Anas platyrhynchos.<br>Cell and Tissue Research, 1984, 236, 217-227.                                                                                 | 2.9                | 40                  |
| 237 | Neuronal organization of the avian paraventricular nucleus: Intrinsic, afferent, and efferent connections. The Journal of Experimental Zoology, 1984, 232, 387-395.                                                                     | 1.4                | 56                  |
| 238 | Sensory and Central Nervous Elements in the Avian Pineal Organ. Ophthalmic Research, 1984, 16, 96-101.                                                                                                                                  | 1.9                | 23                  |
| 239 | A Golgi study on the cerebrospinal fluid (CSF)-contacting neurons in the paraventricular nucleus of the Pekin duck. Cell and Tissue Research, 1983, 228, 149-63.                                                                        | 2.9                | 28                  |
| 240 | Central innervation of the pineal organ of the Mongolian gerbil. Cell and Tissue Research, 1983, 230, 259-72.                                                                                                                           | 2.9                | 47                  |
| 241 | The origin of central pinealopetal nerve fibers in the Mongolian gerbil as demonstrated by the retrograde transport of horseradish peroxidase. Cell and Tissue Research, 1983, 230, 273-87.                                             | 2.9                | 69                  |
| 242 | Opsin-immunoreactive outer segments in the pineal and parapineal organs of the lamprey (Lampetra) Tj ETQq0<br>Research, 1983, 230, 289-307.                                                                                             | 0 0 rgBT /(<br>2.9 | Overlock 10 T<br>72 |
| 243 | CSF-contacting and other somatostatin-immunoreactive neurons in the brains of Anguilla anguilla,<br>Phoxinus phoxinus, and Salmo gairdneri (Teleostei). Cell and Tissue Research, 1983, 233, 319-34.                                    | 2.9                | 39                  |
| 244 | Electrical and morphological studies on sensory cells of the rat pudendal nerve. Journal of Thermal<br>Biology, 1983, 8, 27-30.                                                                                                         | 2.5                | 0                   |
| 245 | Opsin-immunoreactive outer segments and acetylcholinesterase-positive neurons in the pineal complex of Phoxinus phoxinus (Teleostei, Cyprinidae). Cell and Tissue Research, 1982, 227, 351-369.                                         | 2.9                | 70                  |
| 246 | Intrinsic neurons and neural connections of the pineal organ of the house sparrow, Passer<br>domesticus, as revealed by anterograde and retrograde transport of horseradish peroxidase. Cell and<br>Tissue Research, 1982, 222, 243-60. | 2.9                | 37                  |
| 247 | Distribution of sensory neurones of the pudendal nerve in the dorsal root ganglia and their projection to the spinal cord. Cell and Tissue Research, 1982, 226, 555-64.                                                                 | 2.9                | 29                  |
| 248 | Afferent connections of physiologically identified neuronal complexes in the paraventricular<br>nucleus of conscious Pekin ducks involved in regulation of salt- and water-balance. Cell and Tissue<br>Research, 1982, 226, 275-300.    | 2.9                | 27                  |
| 249 | Oxytocin-and vasopressin-immunoreactive nerve fibers in the pineal gland of the hedgehog, Erinaceus europaeus L Cell and Tissue Research, 1981, 220, 87-97.                                                                             | 2.9                | 52                  |
| 250 | Nervous connections of the parietal eye in adult Lacerta s. sicula Rafinesque as demonstrated by<br>anterograde and retrograde transport of horseradish peroxidase. Cell and Tissue Research, 1981, 219,<br>567-83.                     | 2.9                | 47                  |
| 251 | Pineal complex of the clawed toad, Xenopus laevis Daud.: Structure and function. Cell and Tissue<br>Research, 1981, 216, 113-30.                                                                                                        | 2.9                | 49                  |
| 252 | Evidence for a nervous connection between the brain and the pineal organ in the guinea pig. Cell and<br>Tissue Research, 1980, 209, 505-10.                                                                                             | 2.9                | 66                  |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Histological, histochemical and electron microscopical studies on the nervous apparatus of the pineal organ in the tiger salamander, Ambystoma tigrinum. Cell and Tissue Research, 1976, 174, 475-97. | 2.9 | 31        |
| 254 | Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout,                                                                                                       | 2.9 | 63        |

Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract). Cell and Tissue Research, 1974, 155, 475-89. 254