Shengxiang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4813067/publications.pdf

Version: 2024-02-01

		516710	5	501196	
59	875	16		28	
papers	citations	h-index		g-index	
59	59	59		765	
3,7	3,7	3,7		703	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+. Journal of Magnetism and Magnetic Materials, 2011, 323, 1895-1898.	2.3	117
2	Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl. Journal of Magnetism and Magnetic Materials, 2017, 444, 49-53.	2.3	75
3	Design and study of a metamaterial based sensor for the application of liquid chemicals detection. Journal of Materials Research and Technology, 2020, 9, 10291-10304.	5.8	60
4	Electromagnetic matching and microwave absorption abilities of Ti3SiC2 encapsulated with Ni0.5Zn0.5Fe2O4 shell. Journal of Magnetism and Magnetic Materials, 2019, 473, 184-189.	2.3	47
5	Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO3. Journal of Magnetism and Magnetic Materials, 2017, 426, 267-272.	2.3	43
6	Wide-angle microwave absorption performance of polyurethane foams combined with cross-shaped metamaterial absorber. Results in Physics, 2018, 11, 769-776.	4.1	39
7	The underlying mechanisms of enhanced microwave absorption performance for the NiFe2O4-decorated Ti3C2Tx MXene. Results in Physics, 2019, 15, 102750.	4.1	33
8	Infrared emissivity and microwave transmission behavior of flaky aluminum functionalized pyramidal-frustum shaped periodic structure. Infrared Physics and Technology, 2019, 99, 123-128.	2.9	29
9	Tailoring microwave electromagnetic responses in Ti3C2Tx MXene with CoNi-alloy nanoparticles decoration via mildd hydrothermal method. Results in Physics, 2020, 19, 103516.	4.1	26
10	Effects of Co2O3 on electromagnetic properties of NiCuZn ferrites. Journal of Magnetism and Magnetic Materials, 2018, 452, 349-353.	2.3	25
11	The Detection of Chemical Materials with a Metamaterial-Based Sensor Incorporating Oval Wing Resonators. Electronics (Switzerland), 2020, 9, 825.	3.1	25
12	Effect of Ag substitution on the electromagnetic property and microwave absorption of LaMnO3. Journal of Magnetism and Magnetic Materials, 2012, 324, 3149-3153.	2.3	23
13	Magnetoelectric properties of lead-free (80Bi0.5Na0.5TiO3-20Bi0.5K0.5TiO3)-Ni0.8Zn0.2Fe2O4 particulate composites prepared by <i>in situ</i> i> sol-gel. Journal of Applied Physics, 2017, 122, .	2.5	22
14	Investigation on microwave dielectric behavior of flaky carbonyl iron composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 15112-15118.	2.2	19
15	A Low-Profile Antenna Based on Single-Layer Metasurface for Ku-Band Applications. International Journal of Antennas and Propagation, 2020, 2020, 1-8.	1.2	19
16	Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics. Journal of Materials Science, 2018, 53, 1014-1023.	3.7	17
17	Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	17
18	Electromagnetic simulations of polarization-insensitive and wide-angle multiband metamaterial absorber by incorporating double asterisk resonator. Bulletin of Materials Science, 2020, 43, 1.	1.7	16

#	Article	IF	CITATIONS
19	Tunable and broadband high-performance microwave absorption of ZnFe2O4 nanoparticles decorated Ti3C2Tx MXene composites. Journal of Magnetism and Magnetic Materials, 2022, 541, 168544.	2.3	15
20	N,N-Dimethyl Formamide Regulating Fluorescence of MXene Quantum Dots for the Sensitive Determination of Fe3+. Nanoscale Research Letters, 2021, 16, 160.	5.7	14
21	Magnetic effects on polarization response in particulate magnetoelectric Bi0.5Na0.5TiO3-La0.67Sr0.33MnO3 composites. Materials Letters, 2018, 212, 139-142.	2.6	12
22	Size-dependent magnetoelectric response of (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)-(Ni0.8Zn0.2)Fe2O4 particulate composites. Ceramics International, 2018, 44, 3712-3717.	4.8	12
23	Multipurpose chemical liquid sensing applications by microwave approach. PLoS ONE, 2020, 15, e0232460.	2.5	12
24	Hypersensitized Metamaterials Based on a Corona-Shaped Resonator for Efficient Detection of Glucose. Applied Sciences (Switzerland), 2021, 11, 103.	2.5	12
25	Enhancement of Electrochromic Properties of Polyaniline Induced by Copper Ions. Nanoscale Research Letters, 2022, 17, 51.	5.7	12
26	Dual-function flexible metasurface for absorption and polarization conversion and its application for radar cross section reduction. Journal of Applied Physics, 2022, 131, .	2.5	11
27	A Fast Ramp-Voltage-Based Current Programming Driver for AMOLED Display. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1129-1133.	3.0	10
28	Comptibility of optical transparency and microwave absorption in C-band for the metamaterial with second-order cross fractal structure. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113756.	2.7	10
29	Microwave Wireless Power Transfer System Based on a Frequency Reconfigurable Microstrip Patch Antenna Array. Energies, 2021, 14, 415.	3.1	10
30	Investigation on magnetoelectric behavior of (80Bi0.5Na0.5TiO3-20Bi0.5K0.5TiO3)-CoFe2O4 particulate composites. Journal of Magnetism and Magnetic Materials, 2017, 444, 284-290.	2.3	9
31	Effect of temperature on dielectric response in X-band of silicon nitride ceramics prepared by gelcasting. AIP Advances, 2018, 8, 075127.	1.3	9
32	Analytical drain current model for symmetric dual-gate amorphous indium gallium zinc oxide thin-film transistors. Japanese Journal of Applied Physics, 2018, 57, 014301.	1.5	8
33	Porous Carbon Substrate Improving the Sensing Performance of Copper Nanoparticles Toward Glucose. Nanoscale Research Letters, 2021, 16, 127.	5.7	7
34	Active metasurface microwave absorber with reconfigurable bandwidth and absorption intensity. Journal Physics D: Applied Physics, 2022, 55, 344003.	2.8	7
35	A polarization-independent and broadband microwave metamaterial absorber based on three-dimensional structure. Journal of Modern Optics, 2018, 65, 1521-1528.	1.3	5
36	Omnidirectional magnetic resonant coupling wireless power transfer system with a cubic spiral transmitter. AIP Advances, 2019, 9, .	1.3	5

3

#	Article	IF	CITATIONS
37	Magnetic Resonated Bilayer Square-Ring–Enabled Dual-Peak Metamaterial Absorber in P-Band. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3593-3600.	1.8	5
38	High Sensitive Readout Circuit for Capacitance Touch Panel With Large Size. IEEE Sensors Journal, 2019, 19, 1412-1415.	4.7	5
39	Implementation of Fuzzy C-Means (FCM) Clustering Based Camouflage Image Generation Algorithm. IEEE Access, 2021, 9, 120203-120209.	4.2	5
40	Electromagnetic responses of magnetic conductive hollow fibers. Journal of Applied Physics, 2012, 111, 084506.	2.5	4
41	An AMOLED Pixel Circuit Based on LTPS Thin-film Transistors with Mono-Type Scanning Driving. Electronics (Switzerland), 2020, 9, 574.	3.1	4
42	A mV-level real-time peak-voltage detection circuit based on differential structure. Review of Scientific Instruments, 2021, 92, 034713.	1.3	4
43	Poly-Si TFTs integrated gate driver circuit with charge-sharing structure. Journal of Semiconductors, 2017, 38, 055001.	3.7	3
44	Magnetoelectric Effect in Cofired Leadâ€Free Laminated (Bi _{0.5} Na _{0.5} TiO ₃ â€Bi _{0.5} K _{0.5} TiO ₃ <td>o>)/(N& sub</td> <td>>0:8Zr</td>	o>)/(N& sub	>0 : 8Zr
45	Tunable Magnetoelectric Response in Cofired (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)/CoFe2O4 Laminated Composite. Journal of Electronic Materials, 2020, 49, 650-658.	2.2	2
46	Chaos patterned metasurface absorber with multi-peak and broadband. Journal of Applied Physics, 2021, 130, .	2.5	2
47	Metamaterialâ€based frequency reconfigurable microstrip antenna for wideband and improved gain performance. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32, e22988.	1.2	2
48	Omnidirectional wireless power transfer system with a multidirectional receiver inside a cubic transmitter. IEICE Electronics Express, 2020, 17, 20200257-20200257.	0.8	2
49	Realization of Wideband Magnetoelectric Response Utilizing Three-Phase Particulate Ceramics. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2193-2197.	1.8	1
50	A sensitivity-enhanced capacitance readout circuit with symmetric cross-coupling structure. Review of Scientific Instruments, 2020, 91, 035001.	1.3	1
51	Low-profile linear polarization conversion metasurfaces using degenerate modes for high-selectivity. Journal Physics D: Applied Physics, 0, , .	2.8	1
52	Mechanism analysis of irradiation location dependent leakage current for zinc oxide thin-film transistors. AIP Advances, 2021, 11, 075108.	1.3	0
53	Design of Microstrip Patch Antenna Array with Enhanced Gain Based on the Metamaterial. , 2021, , .		0
54	Fractal Order Dependent Frequency-Shifting of Perfect Absorber Based on Fractal Pattern Enabled Metasurface. , 2021, , .		0

SHENGXIANG HUANG

#	Article	IF	CITATIONS
55	Multipurpose chemical liquid sensing applications by microwave approach. , 2020, 15, e0232460.		O
56	Multipurpose chemical liquid sensing applications by microwave approach., 2020, 15, e0232460.		O
57	Multipurpose chemical liquid sensing applications by microwave approach., 2020, 15, e0232460.		O
58	Multipurpose chemical liquid sensing applications by microwave approach., 2020, 15, e0232460.		0
59	Design of Real-Time Automatic Gain Control Circuit for Ultra-Low-Frequency (ULF) Communications. , 2022, , .		O