
Carlos Moreno-Castilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4812742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrocatalytic activity of calcined manganese ferrite solid nanospheres in the oxygen reduction reaction. Environmental Research, 2022, 204, 112126.	7.5	2
2	Freshwater production from air dehumidification using novel SiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e378" altimg="si7.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub>-based supported material and solar energy: Colombia case study. Energy Reports, 2022, 8, 3115-3126.</mml:math 	5.1	2
3	Extra-Heavy Crude Oil Viscosity Reduction Using and Reusing Magnetic Copper Ferrite Nanospheres. Processes, 2021, 9, 175.	2.8	12
4	Remediation of water polluted with model endocrine disruptors based on adsorption processes. , 2021, , 75-112.		0
5	Physicochemical characteristics of calcined MnFe2O4 solid nanospheres and their catalytic activity to oxidize para-nitrophenol with peroxymonosulfate and n-C7 asphaltenes with air. Journal of Environmental Management, 2021, 281, 111871.	7.8	20
6	Copper ferrite nanospheres composites mixed with carbon black to boost the oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126060.	4.7	9
7	Manganese ferrite solid nanospheres solvothermally synthesized as catalyst for peroxymonosulfate activation to degrade and mineralize para-nitrophenol: Study of operational variables and catalyst reutilization. Journal of Environmental Chemical Engineering, 2021, 9, 105192.	6.7	13
8	Removal of Phenolic Compounds from Water Using Copper Ferrite Nanosphere Composites as Fenton Catalysts. Nanomaterials, 2019, 9, 901.	4.1	22
9	Removal of bisphenols A and S by adsorption on activated carbon clothes enhanced by the presence of bacteria. Science of the Total Environment, 2019, 669, 767-776.	8.0	48
10	Surface Characteristics and Electrochemical Performance of Activated Carbons from Schinus molle Stones Prepared by Hydrothermal Carbonization and KOH Activation. International Journal of Electrochemical Science, 2019, , 11138-11151.	1.3	0
11	Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. Journal of Colloid and Interface Science, 2018, 511, 193-202.	9.4	50
12	Synthesis and characterization of solid polymer and carbon spheres derived from an emulsion polymerization reaction of different phenolic compounds with formaldehyde. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 488-496.	4.7	11
13	Symmetric Supercapacitor Electrodes from KOH Activation of Pristine, Carbonized, and Hydrothermally Treated Melia azedarach Stones. Materials, 2017, 10, 747.	2.9	15
14	Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions. Applied Catalysis B: Environmental, 2016, 196, 207-215.	20.2	84
15	Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions. Advances in Colloid and Interface Science, 2016, 236, 113-141.	14.7	30
16	Fenton oxidation of gallic and p-coumaric acids in water assisted by an activated carbon cloth. Water Science and Technology, 2015, 71, 789-794.	2.5	4
17	Effect of dilution ratio and drying method of resorcinol–formaldehyde carbon gels on their electrocapacitive properties in aqueous and non-aqueous electrolytes. Journal of Sol-Gel Science and Technology, 2015, 75, 407-412.	2.4	11
18	On porosity of archeological bones I — Textural characterization of pathological Spanish medieval human bones. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414, 486-492.	2.3	3

CARLOS MORENO-CASTILLA

#	Article	IF	CITATIONS
19	On porosity of archeological bones II. Textural characterization of Mesoamerican human bones. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414, 493-499.	2.3	4
20	Influence of the Boron Precursor and Drying Method on Surface Properties and Electrochemical Behavior of Boron-Doped Carbon Gels. Langmuir, 2014, 30, 1716-1722.	3.5	17
21	Growth and spontaneous differentiation of umbilical-cord stromal stem cells on activated carbon cloth. Journal of Materials Chemistry B, 2013, 1, 3359.	5.8	5
22	Electrochemical performance of Cu- and Ag-doped carbon aerogels. Materials Chemistry and Physics, 2013, 138, 870-876.	4.0	21
23	Importance of the rheological properties of resorcinol–formaldehyde sols in the preparation of Cu-doped organic and carbon xerogel microspheres. Carbon, 2013, 53, 402-405.	10.3	6
24	Synthesis, surface characteristics, and electrochemical capacitance of Cu-doped carbon xerogel microspheres. Carbon, 2013, 55, 260-268.	10.3	15
25	Metal-doped carbon xerogels for the electro-catalytic conversion of CO2 to hydrocarbons. Carbon, 2013, 56, 324-331.	10.3	56
26	Carbon Xerogel Microspheres and Monoliths from Resorcinol–Formaldehyde Mixtures with Varying Dilution Ratios: Preparation, Surface Characteristics, and Electrochemical Double-Layer Capacitances. Langmuir, 2013, 29, 6166-6173.	3.5	50
27	Carbon Aerogel-Supported Pt Catalysts for the Hydrogenolysis and Isomerization of n-Butane: Influence of the Carbonization Temperature of the Support and Pt Particle Size. Catalysts, 2012, 2, 422-433.	3.5	4
28	Competitive adsorption of the herbicide fluroxypyr and tannic acid from distilled and tap water on activated carbons and their thermal desorption. Adsorption, 2012, 18, 173-179.	3.0	12
29	Preparation, surface characteristics, and electrochemical double-layer capacitance of KOH-activated carbon aerogels and their O- and N-doped derivatives. Journal of Power Sources, 2012, 219, 80-88.	7.8	68
30	Electrochemical performance of carbon gels with variable surface chemistry and physics. Carbon, 2012, 50, 3324-3332.	10.3	48
31	Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications. Energy Conversion and Management, 2012, 53, 219-223.	9.2	64
32	Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 2012, 111, 185-190.	9.6	368
33	Boiled versus unboiled: a study on Neolithic and contemporary human bones. Journal of Archaeological Science, 2011, 38, 2561-2570.	2.4	36
34	Activated carbon cloth as adsorbent and oxidation catalyst forÂtheÂremoval of amitrole from aqueous solution. Adsorption, 2011, 17, 413-419.	3.0	18
35	Surface characteristics and electrochemical capacitances of carbon aerogels obtained from resorcinol and pyrocatechol using boric and oxalic acids as polymerization catalysts. Carbon, 2011, 49, 3808-3819.	10.3	61
36	Heterogeneous and homogeneous Fenton processes using activated carbon for the removal of the her her her her be herbicide amitrole from water. Applied Catalysis B: Environmental, 2011, 101, 425-430.	20.2	60

CARLOS MORENO-CASTILLA

#	Article	IF	CITATIONS
37	Adsorption Kinetics of Fluroxypyr Herbicide in Aqueous Solution onto Granular Activated Carbon. Separation Science and Technology, 2011, 46, 1582-1590.	2.5	0
38	Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications. Materials, 2010, 3, 1203-1227.	2.9	52
39	Water adsorption on zeolite 13X: comparison of the two methods based on mass spectrometry and thermogravimetry. Adsorption, 2010, 16, 141-146.	3.0	47
40	Adsorption mechanisms of metal cations from water on an oxidized carbon surface. Journal of Colloid and Interface Science, 2010, 345, 461-466.	9.4	42
41	Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity. Water Research, 2010, 44, 879-885.	11.3	49
42	Adsorption and thermal desorption of the herbicide fluroxypyr on activated carbon fibers and cloth at different pH values. Journal of Colloid and Interface Science, 2009, 331, 2-7.	9.4	34
43	Carbon aerogels from gallic acid–resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions. Carbon, 2009, 47, 463-469.	10.3	46
44	Influence of support porosity and Pt content of Pt/carbon aerogel catalysts on metal dispersion and formation of self-assembled Pt–carbon hybrid nanostructures. Carbon, 2009, 47, 2679-2687.	10.3	28
45	Activated carbon cloth as support for mesenchymal stem cell growth and differentiation to osteocytes. Carbon, 2009, 47, 3574-3577.	10.3	24
46	Surface Chemistry, Porous Texture, and Morphology of N-Doped Carbon Xerogels. Langmuir, 2009, 25, 466-470.	3.5	93
47	Kinetics of diuron and amitrole adsorption from aqueous solution on activated carbons. Journal of Hazardous Materials, 2008, 156, 472-477.	12.4	66
48	Temperature dependence of the point of zero charge of oxidized and non-oxidized activated carbons. Carbon, 2008, 46, 778-787.	10.3	48
49	Carbon-based monolithic supports for palladium catalysts: The role of the porosity in the gas-phase total combustion of m-xylene. Applied Catalysis B: Environmental, 2008, 77, 272-277.	20.2	35
50	Inter- and Intra-Primary-Particle Structure of Monolithic Carbon Aerogels Obtained with Varying Solvents. Langmuir, 2008, 24, 2820-2825.	3.5	25
51	Adsorption of Organic Solutes from Dilute Aqueous Solutions. , 2008, , 653-678.		0
52	Removal of diuron and amitrole from water under static and dynamic conditions using activated carbons in form of fibers, cloth, and grains. Water Research, 2007, 41, 2865-2870.	11.3	53
53	Adsorption of Benzene, Toluene, and Xylenes on Monolithic Carbon Aerogels from Dry Air Flows. Langmuir, 2007, 23, 10095-10101.	3.5	74
54	Effect of Surface Chemistry, Solution pH, and Ionic Strength on the Removal of Herbicides Diuron and Amitrole from Water by an Activated Carbon Fiber. Langmuir, 2007, 23, 1242-1247.	3.5	123

CARLOS MORENO-CASTILLA

#	Article	IF	CITATIONS
55	Methanol partial oxidation on carbon-supported Pt and Pd catalysts. Catalysis Today, 2007, 123, 158-163.	4.4	36
56	Reversible toluene adsorption on monolithic carbon aerogels. Journal of Hazardous Materials, 2007, 148, 548-552.	12.4	76
57	Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 2007, 75, 312-323.	20.2	486
58	Surface Area and Microporosity of Carbon Aerogels from Gas Adsorption and Small- and Wide-Angle X-ray Scattering Measurements. Journal of Physical Chemistry B, 2006, 110, 8681-8688.	2.6	53
59	Temperature Dependence of Herbicide Adsorption from Aqueous Solutions on Activated Carbon Fiber and Cloth. Langmuir, 2006, 22, 9586-9590.	3.5	46
60	Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon, 2006, 44, 2301-2307.	10.3	96
61	Pd and Pt catalysts supported on carbon-coated monoliths for low-temperature combustion of xylenes. Carbon, 2006, 44, 2463-2468.	10.3	48
62	About the endothermic nature of the adsorption of the herbicide diuron from aqueous solutions on activated carbon fiber. Carbon, 2006, 44, 2335-2338.	10.3	47
63	Granular and monolithic activated carbons from KOH-activation of olive stones. Microporous and Mesoporous Materials, 2006, 92, 64-70.	4.4	126
64	A study of the static and dynamic adsorption of Zn(II) ions on carbon materials from aqueous solutions. Journal of Colloid and Interface Science, 2005, 288, 335-341.	9.4	66
65	Carbon aerogels for catalysis applications: An overview. Carbon, 2005, 43, 455-465.	10.3	607
66	Nanoporous carbon materials: Comparison between information obtained by SAXS and WAXS and by gas adsorption. Carbon, 2005, 43, 3009-3012.	10.3	18
67	Influence of Pt particle size on catalytic combustion of xylenes on carbon aerogel-supported Pt catalysts. Applied Catalysis B: Environmental, 2005, 61, 253-258.	20.2	47
68	Preparation and characterization of new adsorbent materials from the olive wastes. European Physical Journal Special Topics, 2005, 123, 121-124.	0.2	3
69	Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry. Environmental Science & amp; Technology, 2005, 39, 6246-6250.	10.0	367
70	Molybdenum Carbide Formation in Molybdenum-Doped Organic and Carbon Aerogels. Langmuir, 2005, 21, 10850-10855.	3.5	30
71	Catalytic combustion of toluene on platinum-containing monolithic carbon aerogels. Applied Catalysis B: Environmental, 2004, 54, 217-224.	20.2	96
72	Cadmium Ion Adsorption on Different Carbon Adsorbents from Aqueous Solutions. Effect of Surface Chemistry, Pore Texture, Ionic Strength, and Dissolved Natural Organic Matter. Langmuir, 2004, 20, 8142-8148.	3.5	104

#	Article	IF	CITATIONS
73	Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 2004, 42, 83-94.	10.3	1,127
74	Surface morphology, metal dispersion, and pore texture of transition metal-doped monolithic carbon aerogels and steam-activated derivatives. Microporous and Mesoporous Materials, 2004, 69, 119-125.	4.4	80
75	Carbon-supported Pt as catalysts for low-temperature methanol decomposition to carbon monoxide and hydrogen. Applied Catalysis A: General, 2004, 275, 119-126.	4.3	27
76	Tungsten oxide catalysts supported on activated carbons: effect ofBtungsten precursor and pretreatment on dispersion, distribution, andBsurface acidity of catalysts. Journal of Catalysis, 2003, 217, 30-37.	6.2	44
77	Bioadsorption of Pb(II), Cd(II), and Cr(VI) on activated carbon from aqueous solutions. Carbon, 2003, 41, 323-330.	10.3	116
78	On the nature of surface acid sites of chlorinated activated carbons. Carbon, 2003, 41, 473-478.	10.3	124
79	Influence of carbon–oxygen surface complexes on the surface acidity of tungsten oxide catalysts supported on activated carbons. Carbon, 2003, 41, 1157-1167.	10.3	43
80	Skeletal isomerization of 1-butene on tungsten oxide catalysts supported on activated carbons with various surface oxygen contents. Carbon, 2003, 41, 863-866.	10.3	7
81	Morphology of heat-treated tunsgten doped monolithic carbon aerogels. Carbon, 2003, 41, 1291-1299.	10.3	39
82	Influence of support surface properties on activity of bacteria immobilised on activated carbons for water denitrification. Carbon, 2003, 41, 1743-1749.	10.3	47
83	lonic strength effects in aqueous phase adsorption of metal ions on activated carbons. Carbon, 2003, 41, 2020-2022.	10.3	62
84	Application of ammonia intermittent temperature-programmed desorption to evaluate surface acidity of tungsten oxide supported on activated carbon. Journal of Colloid and Interface Science, 2003, 260, 449-453.	9.4	9
85	Physicochemical Surface Properties of Fe, Co, Ni, and Cu-Doped Monolithic Organic Aerogels. Langmuir, 2003, 19, 5650-5655.	3.5	100
86	Influence of Carbonâ^'Chlorine Surface Complexes on the Properties of Tungsten Oxide Supported on Activated Carbons. 1. Dispersion, Distribution, and Chemical Nature of the Metal Oxide Phase. Journal of Physical Chemistry B, 2003, 107, 4997-5002.	2.6	4
87	Influence of Carbonâ^'Chlorine Surface Complexes on the Properties of Tungsten Oxide Supported on Activated Carbons. 2. Surface Acidity and Skeletal Isomerization of 1-Butene. Journal of Physical Chemistry B, 2003, 107, 5003-5007.	2.6	6
88	Surface Characteristics of Titania/Carbon Composite Aerogels. Langmuir, 2002, 18, 2295-2299.	3.5	64
89	Experimental Design To Optimize Preparation of Activated Carbons for Use in Water Treatment. Environmental Science & Technology, 2002, 36, 3844-3849.	10.0	66
90	Adsorption of Phenolic Compounds from Aqueous Solutions, by Activated Carbons, Described by the Dubininâ^'Astakhov Equation. Langmuir, 2001, 17, 3301-3306.	3.5	97

#	Article	IF	CITATIONS
91	Tungsten and Tungsten Carbide Supported on Activated Carbon:  Surface Structures and Performance for Ethylene Hydrogenation. Langmuir, 2001, 17, 1752-1756.	3.5	59
92	Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology and Biotechnology, 2001, 76, 1209-1215.	3.2	384
93	Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon, 2001, 39, 425-432.	10.3	272
94	Dehydration of methanol to dimethyl ether catalyzed by oxidized activated carbons with varying surface acidic character. Carbon, 2001, 39, 869-875.	10.3	86
95	Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon, 2001, 39, 1415-1420.	10.3	159
96	Distribution of surface oxygen complexes on activated carbons from immersion calorimetry, titration and temperature-programmed desorption techniques. Carbon, 2001, 39, 2235-2237.	10.3	23
97	Carbon Materials as Adsorbents for the Removal of Pollutants from the Aqueous Phase. MRS Bulletin, 2001, 26, 890-894.	3.5	67
98	Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 2000, 38, 1995-2001.	10.3	765
99	Specific and non-specific interactions of water molecules with carbon surfaces from immersion calorimetry. Carbon, 2000, 38, 825-829.	10.3	79
100	Regularities in the temperature-programmed desorption spectra of CO2 and CO from activated carbons. Carbon, 2000, 38, 1297-1308.	10.3	171
101	Synthesis, pore texture and surface acid–base character of TiO2/carbon composite xerogels and aerogels and their carbonized derivatives. Applied Catalysis A: General, 2000, 203, 151-159.	4.3	62
102	Title is missing!. Reaction Kinetics and Catalysis Letters, 2000, 71, 137-142.	0.6	19
103	Tungsten catalysts supported on activated carbonl. Preparation and characterization after their heat treatments in inert atmosphere. Journal of Catalysis, 2000, 192, 363-373.	6.2	57
104	Tungsten catalysts supported on activated carbonII. Skeletal isomerization of 1-butene. Journal of Catalysis, 2000, 192, 374-380.	6.2	30
105	Catalytic Graphitization of Carbon Aerogels by Transition Metals. Langmuir, 2000, 16, 4367-4373.	3.5	437
106	Synthesis and surface characteristics of silica– and alumina–carbon composite xerogels. Physical Chemistry Chemical Physics, 2000, 2, 4818-4822.	2.8	39
107	Specific and Nonspecific Interactions between Methanol and Ethanol and Active Carbons. Langmuir, 2000, 16, 5967-5972.	3.5	47
108	Metal-carbon aerogels as catalysts and catalyst supports. Studies in Surface Science and Catalysis, 2000, , 1007-1012.	1.5	32

#	Article	IF	CITATIONS
109	Group 6 metal oxide-carbon aerogels. Their synthesis, characterization and catalytic activity in the skeletal isomerization of 1-butene. Applied Catalysis A: General, 1999, 183, 345-356.	4.3	96
110	Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon, 1999, 37, 1199-1205.	10.3	177
111	On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 1999, 37, 1215-1221.	10.3	693
112	On the Adsorption of Formaldehyde at High Temperatures and Zero Surface Coverage. Langmuir, 1999, 15, 3226-3231.	3.5	31
113	Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon, 1998, 36, 145-151.	10.3	290
114	Surface-Treated Activated Carbons as Catalysts for the Dehydration and Dehydrogenation Reactions of Ethanol. Journal of Physical Chemistry B, 1998, 102, 9239-9244.	2.6	76
115	Adsorption of Humic Substances on Activated Carbon from Aqueous Solutions and Their Effect on the Removal of Cr(III) Ions. Langmuir, 1998, 14, 1880-1886.	3.5	141
116	Determination of the Micropore Texture of Some Glassy Carbons Using Molecular Probes. Langmuir, 1997, 13, 1218-1224.	3.5	17
117	Adsorption of Organic Probes on Carbon Materials at Zero Surface Coverage. Journal of Physical Chemistry B, 1997, 101, 8191-8196.	2.6	19
118	Water adsorption on activated carbons with different degrees of oxidation. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2211-2215.	1.7	98
119	On the Carbon Dioxide and Benzene Adsorption on Activated Carbons To Study Their Micropore Structure. Langmuir, 1997, 13, 5208-5210.	3.5	20
120	Adsorption of SO2 from flowing air by alkaline-oxide-containing activated carbons. Applied Catalysis B: Environmental, 1997, 13, 229-240.	20.2	12
121	The creation of acid carbon surfaces by treatment with (NH4)2S2O8. Carbon, 1997, 35, 1619-1626.	10.3	186
122	Effects of ageing on the oxygen surface complexes of an oxidized activated carbon. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2779-2782.	1.7	25
123	Chemical and Thermal Regeneration of an Activated Carbon Saturated with Chlorophenols. Journal of Chemical Technology and Biotechnology, 1996, 67, 183-189.	3.2	23
124	Demineralization of a bituminous coal by froth flotation before obtaining activated carbons. Carbon, 1996, 34, 917-921.	10.3	11
125	Microporous activated carbons from a bituminous coal. Fuel, 1996, 75, 966-970.	6.4	48
126	Effect of alkaline metal oxides on the adsorption of SO2 by activated carbons. Coal Science and Technology, 1995, , 1827-1830.	0.0	0

#	Article	IF	CITATIONS
127	Micropore Structure of Activated Carbons Prepared From a Spanish Subbituminous Coal Studied by CO2, Benzene, and Cyclohexane Adsorption. Langmuir, 1995, 11, 247-252.	3.5	17
128	Effect of Oxygen Plasma Treatment on the Porosity and Surface Chemical Nature of Glassy Carbons. Journal of Colloid and Interface Science, 1995, 176, 128-137.	9.4	26
129	Hydrogenation of CO2 and CO by Fe catalysts obtained from Fe2(CO)9 and Fe3(CO)12 clusters supported on activated carbons. Fuel, 1995, 74, 830-835.	6.4	8
130	Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon, 1995, 33, 845-851.	10.3	199
131	Thermal regeneration of an activated carbon exhausted with different substituted phenols. Carbon, 1995, 33, 1417-1423.	10.3	123
132	Hydrogenation of carbon oxides by Ru/activated carbon catalysts obtained from Ru3(CO)12: effect of pretreatment on their dispersion, composition and activity. Journal of Molecular Catalysis A, 1995, 95, 223-233.	4.8	20
133	Thermal Desorption of Chlorophenols from Activated Carbons with Different Porosity. Langmuir, 1995, 11, 2648-2651.	3.5	27
134	Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir, 1995, 11, 4386-4392.	3.5	501
135	Cobalt catalysts supported on activated carbons: preparation and behaviour in the hydrogenation of carbon oxides. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3519.	1.7	19
136	Thermal desorption of gallic acid from activated carbon surfaces. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3213-3217.	1.7	5
137	Influence of the oxygen surface complexes of activated carbons on the adsorption of chromium ions from aqueous solutions: Effect of sodium chloride and humic acid. Carbon, 1994, 32, 93-100.	10.3	116
138	Thermal desorption of chlorophenols from activated carbon. Influence of the treatment atmosphere. Carbon, 1994, 32, 743-746.	10.3	10
139	A TPD Study of Chromium Catalysts Supported on an Oxidized and Nonoxidized Activated Carbon. Energy & Fuels, 1994, 8, 1233-1237.	5.1	9
140	Adsorption of carbon dioxide on activated carbons from diluted ambient environments. Energy & Fuels, 1994, 8, 239-243.	5.1	26
141	Removal of tannic acid from aqueous solutions by activated carbons. The Chemical Engineering Journal, 1993, 52, 37-39.	0.3	12
142	Activated carbons from a subbituminous coal: Pore texture and electrokinetic properties. Carbon, 1993, 31, 815-819.	10.3	36
143	Regeneration of activated carbons exhausted with chlorophenols. Carbon, 1993, 31, 857-863.	10.3	81
144	Activated carbons as adsorbents of sulfur dioxide in flowing air. Effect of their pore texture and surface basicity. Langmuir, 1993, 9, 1378-1383.	3.5	85

#	Article	IF	CITATIONS
145	Applicability of the Dubinin-Radushkevich equation to carbon dioxide adsorption on activated carbons. Langmuir, 1993, 9, 2758-2760.	3.5	62
146	Activated carbon columns as adsorbents of gallic acid from aqueous solutions: Effect of the presence of different electrolytes. Carbon, 1992, 30, 107-111.	10.3	15
147	Adsorption of SO2 in flowing air onto activated carbons from olive stones. Fuel, 1992, 71, 575-578.	6.4	26
148	Steam gasification of a lignite char catalysed by metals from chromium to zinc. Fuel, 1992, 71, 105-108.	6.4	11
149	Use of activated carbons obtained from agricultural by-products for the adsorption of some hydrocarbons. Langmuir, 1991, 7, 339-343.	3.5	30
150	Pt/carbon catalysts: Effect of pretreatment on the dispersion and morphology of the Pt particles, on their capacity to chemisorb H2 and on the H2/n-C4H10 reaction. Journal of Molecular Catalysis, 1991, 66, 329-341.	1.2	15
151	Gasification in dry air of coals extracted with tetrahydrofuran. Fuel Processing Technology, 1991, 27, 57-65.	7.2	1
152	Effect of preparation conditions on the properties of carbon-supported nickel catalysts. Reaction Kinetics and Catalysis Letters, 1991, 43, 93-98.	0.6	5
153	Comparison of activated carbons prepared from agricultural raw materials and spanish lignites when removing chlorophenols from aqueous solutions. Carbon, 1991, 29, 613-619.	10.3	49
154	MoO2 as catalyst in the CO2 gasification of activated carbons and chars. Fuel, 1991, 70, 13-16.	6.4	13
155	The use of activated carbon columns for the removal of ortho-phosphate ions from aqueous solutions. Carbon, 1990, 28, 91-95.	10.3	28
156	Air gasification of activated carbons and chars catalysed by Cr2O3 and MoO2. Fuel, 1990, 69, 354-361.	6.4	21
157	The dynamic adsorption of several hydrocarbons on active carbons. Journal of Colloid and Interface Science, 1990, 136, 160-167.	9.4	22
158	Vanadium pentoxide as catalyst in the air gasification of chars. Fuel, 1989, 68, 968-971.	6.4	11
159	The role of nitrogen and oxygen surface groups in the behavior of carbon-supported iron and ruthenium catalysts. Carbon, 1988, 26, 417-423.	10.3	37
160	The striking behaviour of copper catalysing the gasification reaction of coal chars in dry air. Fuel, 1987, 66, 113-118.	6.4	21
161	Reactivity of Spanish coal chars in dry air. Fuel, 1987, 66, 237-241.	6.4	15
162	Effect of hydrogen reduction on the surface characteristics of carbon-supported iron and ruthenium catalysts. Applied Catalysis, 1986, 23, 299-307.	0.8	15

#	Article	IF	CITATIONS
163	Behaviour of Ag, Cu and Ag-Cu catalysts in the gasification reaction of a lignite char in air. Effect of SO2 on these catalysts. Fuel, 1986, 65, 1419-1422.	6.4	3
164	Study by gas chromatography of the changes produced in surface area and surface heterogeneity of a graphitized carbon black upon air activation. Journal of Colloid and Interface Science, 1986, 112, 293-295.	9.4	8
165	Gas chromatographic determination of adsorption isotherms, spreading pressures, london force interactions and equations of state for n-alkanes on graphite and carbon blacks. Journal of Chromatography A, 1985, 324, 19-28.	3.7	29
166	Carbon molecular sieves produced by the fixation of sulphur surface complexes. Chromatographia, 1985, 20, 709-712.	1.3	15
167	Influence of the particle size of metal in the hydrogenolysis of n-butane on carbon supported iron catalysts. Reaction Kinetics and Catalysis Letters, 1985, 27, 283-286.	0.6	5
168	Study of heat-treated Spanish lignites. Fuel, 1985, 64, 666-673.	6.4	43
169	Gasification reaction of a lignite char catalysed by Cr, Mn, Fe, Co, Ni, Cu and Zn in dry and wet air. Fuel, 1985, 64, 1220-1223.	6.4	31
170	The effect of inorganic constituents of the support on the characteristics of carbon-supported platinum catalysts. Applied Catalysis, 1985, 15, 293-300.	0.8	22
171	Hydrogenolysis of n-butane and hydrogenation of carbon monoxide on Ni and Co catalysts supported on saran carbons. Applied Catalysis, 1985, 14, 159-172.	0.8	24
172	High Temperature Adsorption of Hydrocarbons by Activated Carbons Prepared from Olive Stones. Adsorption Science and Technology, 1984, 1, 103-109.	3.2	11
173	Adsorption of hydrocarbons on graphites and graphitized carbon black at zero surface coverage. Journal of Chromatography A, 1984, 294, 41-50.	3.7	21
174	Adsorption capacity of Saran carbons at high temperatures and under dynamic conditions. Carbon, 1984, 22, 301-304.	10.3	25
175	160. Changes in the adsorption capacity of Saran carbons for some hydrocarbons by gas chromatography. Carbon, 1984, 22, 222.	10.3	Ο
176	176. Iron and ruthenium catalysts supported on Saran carbons. Carbon, 1984, 22, 223-224.	10.3	0
177	177. The use of activated carbons as supports for platinum catalysts. Carbon, 1984, 22, 224.	10.3	1
178	Porous carbon as support for iron and ruthenium catalysts. Fuel, 1984, 63, 1089-1094.	6.4	42
179	Effect of carbonâ€oxygen and carbonâ€sulphur surface complexes on the adsorption of mercuric chloride in aqueous solutions by activated carbons. Journal of Chemical Technology and Biotechnology, 1982, 32, 575-579.	0.2	46
180	Carbon as a support for catalysts—III glassy carbon as a support for iron. Carbon, 1980, 18, 271-276.	10.3	53

#	Article	IF	CITATIONS
181	Surface-Treated Activated Carbon for Removal of Phenol from Water. Separation Science and Technology, 1980, 15, 1733-1752.	2.5	119
182	Changes in surface homogeneity of a graphite upon gasification. Carbon, 1978, 16, 397-401.	10.3	10
183	Adsorption studies on an artificial graphite and its oxide. Carbon, 1975, 13, 553.	10.3	1