Sherri Z Millis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4812694/publications.pdf

Version: 2024-02-01

623734 580821 38 660 14 25 citations g-index h-index papers 39 39 39 1330 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Drivers of genomic loss of heterozygosity in leiomyosarcoma are distinct from carcinomas. Npj Precision Oncology, 2022, 6, 29.	5.4	6
2	Clinical genomic profiling in the management of patients with soft tissue and bone sarcoma. Nature Communications, 2022, 13, .	12.8	51
3	Cyclin Pathway Genomic Alterations Across 190,247 Solid Tumors: Leveraging Large-Scale Data to Inform Therapeutic Directions. Oncologist, 2021, 26, e78-e89.	3.7	18
4	Landscape of Cyclin Pathway Genomic Alterations Across 5,356 Prostate Cancers: Implications for Targeted Therapeutics. Oncologist, 2021, 26, e715-e718.	3.7	5
5	Multiscale-omic assessment of EWSR1-NFATc2 fusion positive sarcomas identifies the mTOR pathway as a potential therapeutic target. Npj Precision Oncology, 2021, 5, 43.	5 . 4	14
6	Genomic alterations and associated pathway abnormalities in Ewing sarcoma Journal of Clinical Oncology, 2021, 39, 11532-11532.	1.6	0
7	Prevalence of Homologous Recombination Pathway Gene Mutations in Melanoma: Rationale for a New Targeted Therapeutic Approach. Journal of Investigative Dermatology, 2021, 141, 2028-2036.e2.	0.7	17
8	The Panâ€Cancer Landscape of Coamplification of the Tyrosine Kinases KIT, KDR, and PDGFRA. Oncologist, 2020, 25, e39-e47.	3.7	13
9	Recurrent secondary genomic alterations in desmoplastic small round cell tumors. BMC Medical Genetics, 2020, 21, 101.	2.1	10
10	Identifying Opportunities and Challenges for Patients With Sarcoma as a Result of Comprehensive Genomic Profiling of Sarcoma Specimens. JCO Precision Oncology, 2020, 4, 176-182.	3.0	9
11	Multiscale omic assessment of EWSR1-NFATc2 fusion positive sarcomas to identify conserved fusion breakpoint and activation of the mTOR pathway Journal of Clinical Oncology, 2020, 38, e23536-e23536.	1.6	O
12	Cyclin pathway genomic alterations across 5,356 prostate cancers Journal of Clinical Oncology, 2020, 38, 179-179.	1.6	0
13	Landscape of cyclin pathway genomic alterations across 7,207 non-prostate genitourinary tumors Journal of Clinical Oncology, 2020, 38, 549-549.	1.6	O
14	Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget, 2019, 10, 4018-4025.	1.8	118
15	Common Secondary Genomic Variants Associated With Advanced Epithelioid Hemangioendothelioma. JAMA Network Open, 2019, 2, e1912416.	5.9	19
16	<i>BRCA1/2</i> Functional Loss Defines a Targetable Subset in Leiomyosarcoma. Oncologist, 2019, 24, 973-979.	3.7	49
17	Clinical, pathological, and genomic features ofÂEWSR1-PATZ1 fusion sarcoma. Modern Pathology, 2019, 32, 1593-1604.	5.5	74
18	Prospective Comprehensive Genomic Profiling of Primary and Metastatic Prostate Tumors. JCO Precision Oncology, 2019, 3, 1-23.	3.0	63

#	Article	IF	Citations
19	Genomic Features for Therapeutic Insights of Chemotherapy-Resistant, Primary Mediastinal Nonseminomatous Germ Cell Tumors and Comparison with Gonadal Counterpart. Oncologist, 2019, 24, e142-e145.	3.7	22
20	Degree of <i>MDM2</i> Amplification Affects Clinical Outcomes in Dedifferentiated Liposarcoma. Oncologist, 2019, 24, 989-996.	3.7	23
21	Phosphatidylinositol 3â€kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities. Cancer, 2019, 125, 1185-1199.	4.1	36
22	Ductal and acinar carcinomas of the prostate: A comparative comprehensive genomic profiling study Journal of Clinical Oncology, 2019, 37, 271-271.	1.6	0
23	Genomic findings in adenocarcinoma of the urinary bladder Journal of Clinical Oncology, 2019, 37, 132-132.	1.6	0
24	Histone H3 modifying genes may serve as a predictive marker for metastasis in synovial sarcoma Journal of Clinical Oncology, 2019, 37, 11058-11058.	1.6	0
25	Secondary genomic alterations in Ewing sarcoma Journal of Clinical Oncology, 2019, 37, 11024-11024.	1.6	0
26	Determinants of secondary alterations in <i>WWTR1-CAMTA1</i> fusion epithelioid hemangioendothelioma Journal of Clinical Oncology, 2019, 37, 11045-11045.	1.6	0
27	<i>BRAF</i> in Lung Cancers: Analysis of Patient Cases Reveals Recurrent <i>BRAF</i> Mutations, Fusions, Kinase Duplications, and Concurrent Alterations. JCO Precision Oncology, 2018, 2, 1-15.	3.0	24
28	Genomic Landscape of Appendiceal Neoplasms. JCO Precision Oncology, 2018, 2, 1-18.	3.0	23
29	Comprehensive genomic characterization of chemotherapy-resistant testicular germ cell tumors (TGCT) Journal of Clinical Oncology, 2018, 36, 4555-4555.	1.6	1
30	Refractory testicular pure seminoma (PS) and non-seminomatous(NS) germ cell tumors (GCT): A comprehensive genomic profiling (CGP) study Journal of Clinical Oncology, 2018, 36, 565-565.	1.6	1
31	<i>FGFR3</i> Driven Metastatic Urothelial Carcinoma of the Urinary Bladder (mUCB): A Comprehensive Genomic Profiling Study Journal of Clinical Oncology, 2018, 36, 4531-4531.	1.6	0
32	Genomic subtypes of angiosarcoma: A comprehensive genomic profiling (CGP) study Journal of Clinical Oncology, 2018, 36, 11576-11576.	1.6	1
33	Next-Generation Sequencing in the Clinical Setting Clarifies Patient Characteristics and Potential Actionability. Cancer Research, 2017, 77, 6313-6320.	0.9	22
34	Clinical Benefit from Trametinib in a Patient with Appendiceal Adenocarcinoma with a GNAS R201H Mutation. Case Reports in Oncology, 2017, 10, 548-552.	0.7	9
35	Impact of next-generation sequencing (NGS) on diagnostic and therapeutic options in soft-tissue and bone sarcoma Journal of Clinical Oncology, 2017, 35, 11001-11001.	1.6	26
36	Identification of novel fumarate hydratase gene alterations in prostate cancer Journal of Clinical Oncology, 2017, 35, 11585-11585.	1.6	3

SHERRI Z MILLIS

#	Article	IF	CITATIONS
37	Comprehensive genomic sequencing of appendiceal cancer tumors to identify different genomic alterations by subtype, novel treatment opportunities, and improved outcomes Journal of Clinical Oncology, 2017, 35, 599-599.	1.6	0
38	Frequency of genetic homologous recombination (HR) alterations in metastatic cutaneous melanoma Journal of Clinical Oncology, 2017, 35, e21033-e21033.	1.6	3