
Zaijin Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4812372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailorable Upconversion White Light Emission from Pr ³⁺ Singleâ€Doped Glass Ceramics via Simultaneous Dualâ€Lasers Excitation. Advanced Optical Materials, 2018, 6, 1700787.	7.3	51
2	Selective doping of Ni2+ in highly transparent glass-ceramics containing nano-spinels ZnGa2O4 and Zn1+x Ga2â^'2x Ge x O4 for broadband near-infrared fiber amplifiers. Scientific Reports, 2017, 7, 1783.	3.3	50
3	Engineering Tunable Broadband Nearâ€Infrared Emission in Transparent Rareâ€Earth Doped Nanocrystalsâ€inâ€Glass Composites via a Bottomâ€Up Strategy. Advanced Optical Materials, 2019, 7, 1801482.	. 7.3	46
4	Phaseâ€Separation Engineering of Glass for Drastic Enhancement of Upconversion Luminescence. Advanced Optical Materials, 2019, 7, 1801572.	7.3	30
5	Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers. Scientific Reports, 2017, 7, 44456.	3.3	28
6	Novel Er ³⁺ /Ho ³⁺ â€codoped glassâ€ceramic fibers for broadband tunable midâ€infrared fiber lasers. Journal of the American Ceramic Society, 2018, 101, 3956-3967.	3.8	27
7	Bane to boon: intrinsic defect sensitized photoluminescence from Mn ²⁺ or rare-earth ion doped fluorosilicate photonic glasses. Journal of Materials Chemistry C, 2017, 5, 11806-11814.	5.5	21
8	Topological Engineering of Photoluminescence Properties of Bismuth―or Erbiumâ€Doped Phosphosilicate Class of Arbitrary P ₂ O ₅ to SiO ₂ Ratio. Advanced Optical Materials, 2018, 6, 1800024.	7.3	19
9	Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Progress in Materials Science, 2021, 121, 100814.	32.8	18
10	Controllable modulation of coordination environments of Mn2+ in glasses and glass-ceramics for tunable luminescence. Journal of the European Ceramic Society, 2020, 40, 1658-1664.	5.7	10
11	Modulation of activator distribution by phase-separation of glass for efficient and tunable upconversion luminescence. RSC Advances, 2020, 10, 12217-12223.	3.6	6
12	Efficient white upconversion luminescence in Yb ³⁺ /Eu ³⁺ doubly-doped transparent glass ceramic. Optics Express, 2021, 29, 21763.	3.4	6
13	High-efficiency luminescence in optical glass via the controllable crystallization of KYb ₃ F ₁₀ nanocrystals depending on the dopants. Optics Letters, 2020, 45, 3030.	3.3	6
14	<i>In situ</i> dopant-induced nano-crystallization of rare-earth-fluoride crystals in phase-separated networks for highly-efficient photoemission and photonic devices. Journal of Materials Chemistry C, 0, , .	5.5	5
15	Nano-Crystallization of Ln-Fluoride Crystals in Glass-Ceramics via Inducing of Yb3+ for Efficient Near-Infrared Upconversion Luminescence of Tm3+. Nanomaterials, 2021, 11, 1033.	4.1	2
16	Topological Engineering of Glass Structures: Topological Engineering of Photoluminescence Properties of Bismuth- or Erbium-Doped Phosphosilicate Glass of Arbitrary P2 O5 to SiO2 Ratio (Advanced Optical Materials 13/2018). Advanced Optical Materials, 2018, 6, 1870051.	7.3	0