Krzysztof Kiryluk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4812221/publications.pdf

Version: 2024-02-01

47006 26613 13,352 117 47 107 citations h-index g-index papers 135 135 135 20542 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	IgA vasculitis with nephritis: update of pathogenesis with clinical implications. Pediatric Nephrology, 2022, 37, 719-733.	1.7	35
2	Identification of a shared genetic risk locus for Kawasaki disease and immunoglobulin A vasculitis by a cross-phenotype meta-analysis. Rheumatology, 2022, 61, 1204-1210.	1.9	7
3	Improving Clinical Trials for Anticomplement Therapies in Complement-Mediated Glomerulopathies: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. American Journal of Kidney Diseases, 2022, 79, 570-581.	1.9	15
4	Mapping GWAS loci to kidney genes and cell types. Kidney International, 2022, 101, 447-450.	5.2	3
5	Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Nature Genetics, 2022, 54, 125-127.	21.4	75
6	Snapshots of nascent RNA reveal cell- and stimulus-specific responses to acute kidney injury. JCI Insight, 2022, 7, .	5.0	3
7	Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2022, 101, 1126-1141.	5.2	46
8	Glomerular Diseases of the Kidney Allograft: Toward a Precision Medicine Approach. Seminars in Nephrology, 2022, 42, 29-43.	1.6	2
9	Genome-wide polygenic score to predict chronic kidney disease across ancestries. Nature Medicine, 2022, 28, 1412-1420.	30.7	48
10	GWAS-Based Discoveries in IgA Nephropathy, Membranous Nephropathy, and Steroid-Sensitive Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 458-466.	4.5	27
11	Rationale and design of the Kidney Precision Medicine Project. Kidney International, 2021, 99, 498-510.	5.2	94
12	New genetic insights into kidney physiology and disease. Nature Reviews Nephrology, 2021, 17, 85-86.	9.6	2
13	Copy Number Variant Analysis and Genome-wide Association Study Identify Loci with Large Effect for Vesicoureteral Reflux. Journal of the American Society of Nephrology: JASN, 2021, 32, 805-820.	6.1	17
14	Membranous Nephropathy: From Research Bench to Personalized Care. Journal of Clinical Medicine, 2021, 10, 1205.	2.4	5
15	Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. Journal of Autoimmunity, 2021, 118, 102593.	6.5	27
16	Medical records-based chronic kidney disease phenotype for clinical care and "big data―observational and genetic studies. Npj Digital Medicine, 2021, 4, 70.	10.9	39
17	Similarity-based health risk prediction using Domain Fusion and electronic health records data. Journal of Biomedical Informatics, 2021, 116, 103711.	4.3	3
18	LIMS1 risk genotype and T cell–mediated rejection in kidney transplant recipients. Nephrology Dialysis Transplantation, 2021, 36, 2120-2129.	0.7	8

#	Article	IF	Citations
19	Early detection of SARSâ€CoVâ€2 and other infections in solid organ transplant recipients and household members using wearable devices. Transplant International, 2021, 34, 1019-1031.	1.6	6
20	Medical Records-Based Genetic Studies of the Complement System. Journal of the American Society of Nephrology: JASN, 2021, 32, 2031-2047.	6.1	10
21	Novel EDGE encoding method enhances ability to identify genetic interactions. PLoS Genetics, 2021, 17, e1009534.	3 . 5	5
22	Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nature Medicine, 2021, 27, 1012-1024.	30.7	109
23	Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. American Journal of Human Genetics, 2021, 108, 1350-1355.	6.2	72
24	Rare loss-of-function variants in type I IFN immunity genes are not associated with severe COVID-19. Journal of Clinical Investigation, 2021, 131, .	8.2	56
25	Quantitative disease risk scores from EHR with applications to clinical risk stratification and genetic studies. Npj Digital Medicine, 2021, 4, 116.	10.9	7
26	Association of rare predicted loss-of-function variants of influenza-related type I IFN genes with critical COVID-19 pneumonia. Reply Journal of Clinical Investigation, 2021, 131, .	8.2	20
27	Generalizability of Polygenic Risk Scores for Breast Cancer Among Women With European, African, and Latinx Ancestry. JAMA Network Open, 2021, 4, e2119084.	5.9	31
28	Coding Variants in Susceptibility to Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 2397-2399.	6.1	0
29	Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality. Journal of Clinical Investigation, 2021, 131, .	8.2	72
30	Elevated Neutrophil Gelatinase-Associated Lipocalin Is Associated With the Severity of Kidney Injury and Poor Prognosis of Patients With COVID-19. Kidney International Reports, 2021, 6, 2979-2992.	0.8	25
31	Genetic background and transplantation outcomes: insights from genome-wide association studies. Current Opinion in Organ Transplantation, 2020, 25, 35-41.	1.6	15
32	Systematic Review and Meta-Analysis of Native Kidney Biopsy Complications. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1595-1602.	4.5	103
33	PO355FAMILY HISTORY OF COMPLEX TRAITS IN THE CUREGN COHORT: ASSOCIATIONS WITH RENAL FUNCTION, COMORBIDITY BURDEN AND DISEASE PROGRESSION. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
34	Association of HLA Typing and Alloimmunity With Posttransplantation Membranous Nephropathy: A Multicenter Case Series. American Journal of Kidney Diseases, 2020, 76, 374-383.	1.9	21
35	Type IV Collagen Mutations in Familial IgA Nephropathy. Kidney International Reports, 2020, 5, 1075-1078.	0.8	26
36	Pilot Study of Return of Genetic Results to Patients in Adult Nephrology. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 651-664.	4.5	28

3

#	Article	IF	CITATIONS
37	Co-localization between Sequence Constraint and Epigenomic Information Improves Interpretation of Whole-Genome Sequencing Data. American Journal of Human Genetics, 2020, 106, 513-524.	6.2	3
38	Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy. Kidney Diseases (Basel, Switzerland), 2020, 6, 168-180.	2.5	26
39	The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nature Communications, 2020, 11, 1600.	12.8	120
40	Donor's APOL1 Risk Genotype and "Second Hits―Associated With De Novo Collapsing Glomerulopathy in Deceased Donor Kidney Transplant Recipients: A Report of 5 Cases. American Journal of Kidney Diseases, 2019, 73, 134-139.	1.9	45
41	Molecular nephrology: types of acute tubular injury. Nature Reviews Nephrology, 2019, 15, 599-612.	9.6	91
42	Development and Validation of a Pragmatic Electronic Phenotype for CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1306-1314.	4.5	34
43	Harmonizing Clinical Sequencing and Interpretation for the eMERGE III Network. American Journal of Human Genetics, 2019, 105, 588-605.	6.2	99
44	Genomic Mismatch at <i>LIMS1</i> Locus and Kidney Allograft Rejection. New England Journal of Medicine, 2019, 380, 1918-1928.	27.0	63
45	Exome-Based Rare-Variant Analyses in CKD. Journal of the American Society of Nephrology: JASN, 2019, 30, 1109-1122.	6.1	40
46	Health-related quality of life in glomerular disease. Kidney International, 2019, 95, 1209-1224.	5.2	38
47	Evaluation of the cost and effectiveness of diverse recruitment methods for a genetic screening study. Genetics in Medicine, 2019, 21, 2371-2380.	2.4	10
48	Precision Medicine in Internal Medicine. Annals of Internal Medicine, 2019, 170, 635.	3.9	12
49	Cases in Precision Medicine: When Patients Present With Direct-to-Consumer Genetic Test Results. Annals of Internal Medicine, 2019, 170, 643.	3.9	7
50	Cases in Precision Medicine: APOL1 and Genetic Testing in the Evaluation of Chronic Kidney Disease and Potential Transplant. Annals of Internal Medicine, 2019, 171, 659.	3.9	13
51	Genome-Wide Study Updates in the International Genetics and Translational Research in Transplantation Network (iGeneTRAiN). Frontiers in Genetics, 2019, 10, 1084.	2.3	13
52	Diagnostic Utility of Exome Sequencing for Kidney Disease. New England Journal of Medicine, 2019, 380, 142-151.	27.0	456
53	Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nature Communications, 2019, 10, 29.	12.8	113
54	The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nature Genetics, 2019, 51, 117-127.	21.4	144

#	Article	IF	CITATIONS
55	CureGN Study Rationale, Design, and Methods: Establishing a Large Prospective Observational Study of Glomerular Disease. American Journal of Kidney Diseases, 2019, 73, 218-229.	1.9	68
56	The eMERGE genotype set of 83,717 subjects imputed to ~40  million variants genome wide and association with the herpes zoster medical record phenotype. Genetic Epidemiology, 2019, 43, 63-81.	1.3	63
57	Insights into CKD from Metabolite GWAS. Journal of the American Society of Nephrology: JASN, 2018, 29, 1349-1351.	6.1	3
58	Precision Medicine for Acute Kidney Injury (AKI): Redefining AKI by Agnostic Kidney Tissue Interrogation and Genetics. Seminars in Nephrology, 2018, 38, 40-51.	1.6	28
59	FUN-LDA: A Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of Noncoding Variation: Methods and Applications. American Journal of Human Genetics, 2018, 102, 920-942.	6.2	75
60	Kidney Failure Risk Prediction Equations in IgA Nephropathy: A Multicenter Risk Assessment Study in Chinese Patients. American Journal of Kidney Diseases, 2018, 72, 371-380.	1.9	38
61	Genome-wide polygenic risk predictors for kidney disease. Nature Reviews Nephrology, 2018, 14, 723-724.	9.6	31
62	Donor APOL1 high-risk genotypes are associated with increased risk and inferior prognosis ofÂdeÂnovo collapsing glomerulopathy in renalÂallografts. Kidney International, 2018, 94, 1189-1198.	5.2	36
63	Probing the Virtual Proteome to Identify Novel Disease Biomarkers. Circulation, 2018, 138, 2469-2481.	1.6	42
64	Harmonizing Outcomes for Genomic Medicine: Comparison of eMERGE Outcomes to ClinGen Outcome/Intervention Pairs. Healthcare (Switzerland), 2018, 6, 83.	2.0	18
65	Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study. Kidney International Reports, 2018, 3, 1373-1384.	0.8	39
66	Genetic Determinants of IgA Nephropathy: Western Perspective. Seminars in Nephrology, 2018, 38, 443-454.	1.6	23
67	Disease Heritability Inferred from Familial Relationships Reported in Medical Records. Cell, 2018, 173, 1692-1704.e11.	28.9	79
68	Deep Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes. American Journal of Human Genetics, 2018, 103, 58-73.	6.2	99
69	Whole-Exome Sequencing in Adults With Chronic Kidney Disease. Annals of Internal Medicine, 2018, 168, 100.	3.9	154
70	An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. American Journal of Human Genetics, 2018, 103, 232-244.	6.2	147
71	Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. New England Journal of Medicine, 2017, 376, 742-754.	27.0	120
72	Genetic Complexities of the HLA Region and Idiopathic Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 1331-1334.	6.1	18

#	Article	IF	CITATIONS
73	Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations. American Journal of Human Genetics, 2017, 101, 789-802.	6.2	63
74	Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy. Kidney International Reports, 2017, 2, 1194-1207.	0.8	49
75	GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genetics, 2017, 13, e1006609.	3.5	92
76	Challenges in Rare Variant Association Studies for Complex Kidney Traits: CFHR5 and IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 2547-2551.	6.1	3
77	Genomeâ€wide association study in mice identifies loci affecting liverâ€related phenotypes including Sel1l influencing serum bile acids. Hepatology, 2016, 63, 1943-1956.	7. 3	2
78	Fine Mapping Implicates a Deletion of CFHR1 and CFHR3 in Protection from IgA Nephropathy in Han Chinese. Journal of the American Society of Nephrology: JASN, 2016, 27, 3187-3194.	6.1	63
79	Novel mutations in the inverted formin 2 gene of Chinese families contribute to focal segmental glomerulosclerosis. Kidney International, 2015, 88, 593-604.	5.2	23
80	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	27.8	1,328
81	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
82	Current Understanding of the Role of Complement in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 1503-1512.	6.1	236
83	Genomic imbalances in pediatric patients with chronic kidney disease. Journal of Clinical Investigation, 2015, 125, 2171-2178.	8.2	68
84	New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney International, 2015, 88, 974-989.	5.2	211
85	Lack of Serologic Evidence to Link IgA Nephropathy with Celiac Disease or Immune Reactivity to Gluten. PLoS ONE, 2014, 9, e94677.	2.5	25
86	A Panel of Serum Biomarkers Differentiates IgA Nephropathy from Other Renal Diseases. PLoS ONE, 2014, 9, e98081.	2.5	93
87	COL4A3 mutations cause focal segmental glomerulosclerosis. Journal of Molecular Cell Biology, 2014, 6, 498-505.	3.3	51
88	The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1. Pediatric Nephrology, 2014, 29, 257-267.	1.7	15
89	Glomerular Diseases. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 617-625.	4.5	28
90	Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nature Genetics, 2014, 46, 1187-1196.	21.4	505

#	Article	IF	CITATIONS
91	Novel Biomarkers in Glomerular Disease. Advances in Chronic Kidney Disease, 2014, 21, 205-216.	1.4	29
92	The genetics and immunobiology of IgA nephropathy. Journal of Clinical Investigation, 2014, 124, 2325-2332.	8.2	182
93	Pathogenesis of Immunoglobulin A Nephropathy: Recent Insight from Genetic Studies. Annual Review of Medicine, 2013, 64, 339-356.	12.2	108
94	Mutations in $\langle i \rangle$ DSTYK $\langle i \rangle$ and Dominant Urinary Tract Malformations. New England Journal of Medicine, 2013, 369, 621-629.	27.0	119
95	Geographic Differences in Genetic Susceptibility to IgA Nephropathy: GWAS Replication Study and Geospatial Risk Analysis. PLoS Genetics, 2012, 8, e1002765.	3.5	301
96	Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations. American Journal of Human Genetics, 2012, 91, 987-997.	6.2	201
97	The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney International, 2012, 82, 790-796.	5.2	185
98	Predicting Progression of IgA Nephropathy: New Clinical Progression Risk Score. PLoS ONE, 2012, 7, e38904.	2.5	109
99	The Pathophysiology of IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2011, 22, 1795-1803.	6.1	584
100	Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nature Genetics, 2011, 43, 321-327.	21.4	528
101	Coiled Versus Straight Peritoneal Dialysis Catheters: A Randomized Controlled Trial and Meta-analysis. American Journal of Kidney Diseases, 2011, 58, 946-955.	1.9	53
102	The molecular pathogenesis of HIV-1 associated nephropathy: recent advances. Journal of Molecular Medicine, 2011, 89, 429-436.	3.9	15
103	APOL1 Variants Increase Risk for FSGS and HIVAN but Not IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2011, 22, 1991-1996.	6.1	110
104	Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch–Schönlein purpura nephritis. Kidney International, 2011, 80, 79-87.	5.2	205
105	Genetic studies of IgA nephropathy: past, present, and future. Pediatric Nephrology, 2010, 25, 2257-2268.	1.7	77
106	Peritoneal Dialysis Outflow Failure From Omental Wrapping Diagnosed by Catheterography. American Journal of Kidney Diseases, 2010, 56, 1006-1011.	1.9	11
107	IgA nephropathy-the case for a genetic basis becomes stronger. Nephrology Dialysis Transplantation, 2010, 25, 336-338.	0.7	11
108	Renal function and genetic variation in dopamine D1 receptor: is the case strong enough?. Kidney International, 2009, 76, 1019-1022.	5.2	3

#	ARTICLE	IF	CITATIONS
109	Susceptibility loci for murine HIV-associated nephropathy encode trans-regulators of podocyte gene expression. Journal of Clinical Investigation, 2009, 119, 1178-1188.	8.2	66
110	The Association Between Kidney Disease and Cardiovascular Risk in a Multiethnic Cohort. Stroke, 2008, 39, 2876-2879.	2.0	47
111	Acute chorea and bilateral basal ganglia lesions in a hemodialysis patient. Kidney International, 2008, 73, 1087-1091.	5 . 2	21
112	Quantitative genetics of renal function: tackling complexities of the eGFR phenotype in gene mapping studies. Kidney International, 2008, 74, 1109-1112.	5.2	7
113	A young man with Propionibacterium acnes-induced shunt nephritis. Kidney International, 2008, 73, 1434-1440.	5.2	17
114	Sickle cell trait and gross hematuria. Kidney International, 2007, 71, 706-710.	5.2	48
115	Thiazolidinediones and fluid retention. Kidney International, 2007, 72, 762-768.	5. 2	15
116	Genetic Susceptibility, HIV Infection, and the Kidney. Clinical Journal of the American Society of Nephrology: CJASN, 2007, 2, S25-S35.	4.5	22
117	A large obstructive parapelvic cyst: Challenging diagnosis and management. Kidney International, 2007, 71, 955.	5.2	8