Young Moo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4812053/publications.pdf

Version: 2024-02-01

495 papers 35,776 citations

101 h-index ⁵⁸²⁹
161
g-index

504 all docs

504 docs citations

504 times ranked 23379 citing authors

#	Article	IF	CITATIONS
1	Impact of side-chains in poly(dibenzyl-co-terphenyl piperidinium) copolymers for anion exchange membrane fuel cells. Journal of Membrane Science, 2022, 644, 120109.	8.2	44
2	Fabrication and modification of PVDF/PSF hollow-fiber membranes for ginseng extract and saline water separations via direct contact membrane distillation. Journal of Membrane Science, 2022, 644, 120101.	8.2	30
3	Effect of structural isomerism on physical and gas transport properties of Tröger's Base-based polyimides. Polymer, 2022, 239, 124412.	3.8	12
4	Reinforced poly(fluorenyl-co-terphenyl piperidinium) anion exchange membranes for fuel cells. Journal of Membrane Science, 2022, 644, 120160.	8.2	23
5	Anion-conducting polyelectrolytes for energy devices. Trends in Chemistry, 2022, 4, 236-249.	8.5	34
6	Di-piperidinium-crosslinked poly(fluorenyl- <i>co</i> -terphenyl piperidinium)s for high-performance alkaline exchange membrane fuel cells. Journal of Materials Chemistry A, 2022, 10, 3678-3687.	10.3	45
7	Strategies for Improving Anion Exchange Membrane Fuel Cell Performance by Optimizing Electrode Conditions. Journal of the Electrochemical Society, 2022, 169, 014515.	2.9	7
8	Robust and durable poly(aryl- <i>co</i> -aryl piperidinium) reinforced membranes for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2022, 10, 6587-6595.	10.3	27
9	Elucidating the role of alkyl chain in poly(aryl piperidinium) copolymers for anion exchange membrane fuel cells. Journal of Membrane Science, 2022, 647, 120341.	8.2	45
10	Design strategy of poly(vinylidene fluoride) membranes for water treatment. Progress in Polymer Science, 2022, 128, 101535.	24.7	73
11	Robust PVDF/PSF hollow-fiber membranes modified with inorganic TiO2 particles for enhanced oil-water separation. Journal of Membrane Science, 2022, 652, 120470.	8.2	27
12	Branched Poly(Aryl Piperidinium) Membranes for Anionâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2022, 134, .	2.0	3
13	Branched Poly(Aryl Piperidinium) Membranes for Anionâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2022, 61, e202114892.	13.8	77
14	Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: Measurement standards and best practices. Journal of Membrane Science, 2022, 659, 120746.	8.2	15
15	Microfiber aligned hollow fiber membranes from immiscible polymer solutions by phase inversion. Journal of Membrane Science, 2021, 617, 118654.	8.2	19
16	Poly(Alkylâ€Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkalineâ€Membrane Fuelâ€Cell Performance of 2.58â€W cm ^{â^2} . Angewandte Chemie - International Edition, 2021 7710-7718.	.,160\$	185
17	Molecular sieving using metal–polymer coordination membranes in organic media. Journal of Materials Chemistry A, 2021, 9, 14400-14410.	10.3	29
18	Poly(Alkylâ€Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkalineâ€Membrane Fuelâ€Cell Performance of 2.58â€W cm ^{â^2} . Angewandte Chemie, 2021, 133, 7789-7797.	2.0	29

#	Article	IF	CITATIONS
19	Anion exchange polyelectrolytes for membranes and ionomers. Progress in Polymer Science, 2021, 113, 101345.	24.7	264
20	Rücktitelbild: Poly(Alkylâ€Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkalineâ€Membrane Fuelâ€Cell Performance of 2.58â€W cm ^{â^²2} (Angew. Chem. 14/2021). Angewandte Chemie, 2021, 133, 8060-8060.	2.0	0
21	Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nature Communications, 2021, 12, 2367.	12.8	193
22	Thermally rearranged semi-interpenetrating polymer network (TR-SIPN) membranes for gas and olefin/paraffin separation. Journal of Membrane Science, 2021, 625, 119157.	8.2	21
23	Insight into the Alkaline Stability of Nâ€Heterocyclic Ammonium Groups for Anionâ€Exchange Polyelectrolytes. Angewandte Chemie - International Edition, 2021, 60, 19272-19280.	13.8	85
24	Insight into the Alkaline Stability of Nâ€Heterocyclic Ammonium Groups for Anionâ€Exchange Polyelectrolytes. Angewandte Chemie, 2021, 133, 19421-19429.	2.0	15
25	Highly Permeable Mixed Matrix Membranes of Thermally Rearranged Polymers and Porous Polymer Networks for Gas Separations. ACS Applied Polymer Materials, 2021, 3, 5224-5235.	4.4	14
26	Microporous polymers with cascaded cavities for controlled transport of small gas molecules. Science Advances, 2021, 7, eabi9062.	10.3	16
27	Membrane distillation & Description and Science, 2021, 638, 119735.	8.2	5
28	In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. Journal of Membrane Science, 2021, 637, 119632.	8.2	19
29	High-performance poly(fluorenyl aryl piperidinium)-based anion exchange membrane fuel cells with realistic hydrogen supply. Journal of Power Sources, 2021, 512, 230474.	7.8	12
30	Chemically & Chemi	8.2	57
31	Effects of bulky 2,2′-substituents in dianhydrides on the microstructures and gas transport properties of thermally rearranged polybenzoxazoles. Journal of Membrane Science, 2021, 639, 119777.	8.2	6
32	High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm ^{â°'2} and a durability of 1000 hours. Energy and Environmental Science, 2021, 14, 6338-6348.	30.8	160
33	(Invited) Poly(aryl-co-aryl piperidinium) Copolymers for High-Performance Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1200-1200.	0.0	0
34	Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chemistry, 2021, 23, 9815-9843.	9.0	71
35	Dimensionally-controlled densification in crosslinked thermally rearranged (XTR) hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2020, 595, 117535.	8.2	22
36	Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. Journal of Membrane Science, 2020, 598, 117683.	8.2	83

#	Article	IF	CITATIONS
37	Thermally rearranged polybenzoxazole copolymers incorporating Tröger's base for high flux gas separation membranes. Journal of Membrane Science, 2020, 612, 118437.	8.2	42
38	Highly permeable polyimides incorporating Tröger's base (TB) units for gas separation membranes. Journal of Membrane Science, 2020, 615, 118533.	8.2	31
39	Energy and time efficient infrared (IR) irradiation treatment for preparing thermally rearranged (TR) and carbon molecular sieve (CMS) membranes for gas separation. Journal of Membrane Science, 2020, 613, 118477.	8.2	17
40	Low energy intensity production of fuel-grade bio-butanol enabled by membrane-based extraction. Energy and Environmental Science, 2020, 13, 4862-4871.	30.8	18
41	Blood Oxygenation Using Fluoropolymer-Based Artificial Lung Membranes. ACS Biomaterials Science and Engineering, 2020, 6, 6424-6434.	5.2	31
42	Effect of N-cyclic cationic groups in poly(phenylene oxide)-based catalyst ionomer membranes for anion exchange membrane fuel cells. Journal of Membrane Science, 2020, 608, 118183.	8.2	32
43	Tröger's Base (TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations. Journal of Membrane Science, 2020, 610, 118255.	8.2	31
44	Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes. Journal of Membrane Science, 2020, 611, 118363.	8.2	32
45	Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting tradeâ€off lines. Journal of Polymer Science, 2020, 58, 2450-2466.	3.8	68
46	Electrical Tunable PVDF/Graphene Membrane for Controlled Molecule Separation. Chemistry of Materials, 2020, 32, 5750-5758.	6.7	39
47	N3-butyl imidazolium-based anion exchange membranes blended with Poly(vinyl alcohol) for alkaline water electrolysis. Journal of Membrane Science, 2020, 611, 118355.	8.2	54
48	Thermally rearranged polymer membranes containing highly rigid biphenyl ortho-hydroxyl diamine for hydrogen separation. Journal of Membrane Science, 2020, 604, 118053.	8.2	33
49	A highly robust and water permeable thin film composite membranes for pressure retarded osmosis generating 26ÂW·mâ^'2 at 21Âbar. Desalination, 2020, 483, 114409.	8.2	24
50	Effects of sulfonate incorporation and structural isomerism on physical and gas transport properties of soluble sulfonated polyimides. Polymer, 2020, 191, 122263.	3.8	19
51	Piezoelectric PVDF membranes for use in anaerobic membrane bioreactor (AnMBR) and their antifouling performance. Journal of Membrane Science, 2020, 603, 118037.	8.2	35
52	Thin film composite on fluorinated thermally rearranged polymer nanofibrous membrane achieves power density of 87ÂWÂmâ°'2 in pressure retarded osmosis, improving economics of osmotic heat engine. Journal of Membrane Science, 2020, 607, 118120.	8.2	20
53	Synthesis of Ultrathin Zeolitic Imidazolate Framework ZIF-8 Membranes on Polymer Hollow Fibers Using a Polymer Modification Strategy for Propylene/Propane Separation. Industrial & Engineering Chemistry Research, 2019, 58, 14947-14953.	3.7	22
54	Highly permeable Thermally Rearranged Mixed Matrix Membranes (TR-MMM). Journal of Membrane Science, 2019, 585, 260-270.	8.2	47

#	Article	IF	CITATIONS
55	UV-crosslinked poly(PEGMA-co-MMA-co-BPMA) membranes: Synthesis, characterization, and CO2/N2 and CO2/CO separation. Journal of Membrane Science, 2019, 587, 117167.	8.2	21
56	Selective ion transport for a vanadium redox flow battery (VRFB) in nano-crack regulated proton exchange membranes. Journal of Membrane Science, 2019, 583, 16-22.	8.2	46
57	Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation. Journal of Membrane Science, 2019, 582, 381-390.	8.2	65
58	Mutual influence of mixed-gas permeation in thermally rearranged poly(benzoxazole-co-imide) polymer membranes. Journal of Membrane Science, 2019, 580, 202-213.	8.2	25
59	<i>In situ</i> formation of zeolitic-imidazolate framework thin films and composites using modified polymer substrates. Journal of Materials Chemistry A, 2019, 7, 9680-9689.	10.3	40
60	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Angewandte Chemie, 2019, 131, 17674-17689.	2.0	68
61	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Angewandte Chemie - International Edition, 2019, 58, 17512-17527.	13.8	186
62	Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science, 2019, 92, 35-88.	24.7	230
63	A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). Journal of Membrane Science, 2019, 574, 44-54.	8.2	205
64	Densification-induced hollow fiber membranes using crosslinked thermally rearranged (XTR) polymer for CO2 capture. Journal of Membrane Science, 2019, 573, 393-402.	8.2	33
65	Bio-Inspired Robust Membranes Nanoengineered from Interpenetrating Polymer Networks of Polybenzimidazole/Polydopamine. ACS Nano, 2019, 13, 125-133.	14.6	112
66	Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674.	10.3	71
67	Thermally rearranged polybenzoxazoles made from poly(ortho-hydroxyamide)s. Characterization and evaluation as gas separation membranes. Reactive and Functional Polymers, 2018, 127, 38-47.	4.1	29
68	Thermally Rearranged Polybenzoxazoles Containing Bulky Adamantyl Groups from Ortho-Substituted Precursor Copolyimides. Macromolecules, 2018, 51, 1605-1619.	4.8	36
69	A robust thin film composite membrane incorporating thermally rearranged polymer support for organic solvent nanofiltration and pressure retarded osmosis. Journal of Membrane Science, 2018, 550, 322-331.	8.2	100
70	Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes. Journal of Membrane Science, 2018, 559, 117-126.	8.2	87
71	Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation. Journal of Membrane Science, 2018, 559, 28-34.	8.2	94
72	A compact and scalable fabrication method for robust thin film composite membranes. Green Chemistry, 2018, 20, 1887-1898.	9.0	31

#	Article	IF	CITATIONS
73	The enhanced hydrogen separation performance of mixed matrix membranes by incorporation of two-dimensional ZIF-L into polyimide containing hydroxyl group. Journal of Membrane Science, 2018, 549, 260-266.	8.2	82
74	Enhanced, hydrophobic, fluorine-containing, thermally rearranged (TR) nanofiber membranes for desalination via membrane distillation. Journal of Membrane Science, 2018, 550, 545-553.	8.2	45
75	Functionalized Boron Nitride Nanosheets: A Thermally Rearranged Polymer Nanocomposite Membrane for Hydrogen Separation. Angewandte Chemie - International Edition, 2018, 57, 16056-16061.	13.8	39
76	Functionalized Boron Nitride Nanosheets: A Thermally Rearranged Polymer Nanocomposite Membrane for Hydrogen Separation. Angewandte Chemie, 2018, 130, 16288-16293.	2.0	30
77	Application of spirobiindane-based microporous poly(ether sulfone)s as polymeric binder on solid alkaline exchange membrane fuel cells. Journal of Membrane Science, 2018, 568, 67-75.	8.2	34
78	Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties. Polymer, 2018, 151, 325-333.	3.8	35
79	Sorption and Diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation. Journal of Membrane Science, 2017, 528, 135-146.	8.2	52
80	Effect of cationic groups in poly(arylene ether sulfone) membranes on reverse electrodialysis performance. Chemical Communications, 2017, 53, 2323-2326.	4.1	40
81	Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chemical Reviews, 2017, 117, 4759-4805.	47.7	732
82	Isomeric influences of naphthalene based sulfonated poly(arylene ether sulfone) membranes for energy generation using reverse electrodialysis and polymer electrolyte membrane fuel cell. Journal of Membrane Science, 2017, 535, 35-44.	8.2	24
83	Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking. Energy and Environmental Science, 2017, 10, 275-285.	30.8	255
84	Wet CO 2 /N 2 permeation through a crosslinked thermally rearranged poly(benzoxazole- co-imide) (XTR-PBOI) hollow fiber membrane module for CO 2 capture. Journal of Membrane Science, 2017, 539, 412-420.	8.2	38
85	Thermally rearranged mixed matrix membranes for CO2 separation: An aging study. International Journal of Greenhouse Gas Control, 2017, 61, 16-26.	4.6	45
86	Exploring and Exploiting the Effect of Solvent Treatment in Membrane Separations. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11279-11289.	8.0	66
87	Permeation and separation of SO2, H2S and CO2 through thermally rearranged (TR) polymeric membranes. Separation and Purification Technology, 2017, 179, 449-454.	7.9	31
88	Sorption, diffusion, and permeability of humid gases and aging of thermally rearranged (TR) polymer membranes from a novel ortho-hydroxypolyimide. Journal of Membrane Science, 2017, 542, 439-455.	8.2	22
89	Membrane separation process for CO2 capture from mixed gases using TR and XTR hollow fiber membranes: Process modeling and experiments. Journal of Membrane Science, 2017, 541, 224-234.	8.2	39
90	Open-source predictive simulators for scale-up of direct contact membrane distillation modules for seawater desalination. Desalination, 2017, 402, 72-87.	8.2	35

#	Article	IF	CITATIONS
91	1.8 Thermally Rearranged Polymeric Membranes: Materials and Applications. , 2017, , 190-215.		2
92	1.15 Effect of Solvents on Membrane Fabrication via Thermally Induced Phase Separation (TIPS): Thermodynamic and Kinetic Perspectives., 2017,, 386-417.		11
93	Microporous polymeric membranes inspired by adsorbent for gas separation. Journal of Materials Chemistry A, 2017, 5, 13294-13319.	10.3	71
94	Property Changes of Anion Exchange Pore-filling Membranes According to Porous Substrates. Membrane Journal, 2017, 27, 344-349.	0.4	1
95	Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AICHE Journal, 2016, 62, 461-490.	3.6	271
96	Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). Journal of Membrane Science, 2016, 514, 250-263.	8.2	351
97	Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes. Journal of Membrane Science, 2016, 510, 472-480.	8.2	42
98	Nanocrack-regulated self-humidifying membranes. Nature, 2016, 532, 480-483.	27.8	362
99	In situ restoring of aged thermally rearranged gas separation membranes. Journal of Membrane Science, 2016, 520, 671-678.	8.2	24
100	Fuel cells: Operating flexibly. Nature Energy, 2016, 1, .	39.5	35
101	Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes. Chemical Communications, 2016, 52, 13556-13559.	4.1	55
102	Side-chain engineering of ladder-structured polysilsesquioxane membranes for gas separations. Journal of Membrane Science, 2016, 516, 202-214.	8.2	40
103	Thermally rearranged polymer membranes for desalination. Energy and Environmental Science, 2016, 9, 878-884.	30.8	53
104	Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide) Tj ETQq0 0 0 rgBT	/9.yerlock	10 Tf 50 22
105	Soluble, microporous, Tröger's Base copolyimides with tunable membrane performance for gas separation. Chemical Communications, 2016, 52, 3817-3820.	4.1	75
106	Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods. Journal of Membrane Science, 2016, 509, 94-104.	8.2	132
107	Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature. Journal of Power Sources, 2016, 305, 259-266.	7.8	24
108	High-strength, soluble polyimide membranes incorporating Tröger's Base for gas separation. Journal of Membrane Science, 2016, 504, 55-65.	8.2	127

#	Article	IF	CITATIONS
109	The high electrochemical performance of Li 3 V 2 (PO 4) 3 supported by graphene and carbon-nanofibers for advanced Li-ion batteries. Materials Research Bulletin, 2016, 73, 211-218.	5.2	15
110	Thermally rearranged poly(benzoxazole -co- imide) hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 2016, 498, 125-134.	8.2	45
111	Membrane operations for produced water treatment. Desalination and Water Treatment, 2016, 57, 14317-14335.	1.0	24
112	Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance. Journal of Membrane Science, 2015, 490, 129-138.	8.2	56
113	Gas separation membranes made through thermal rearrangement of ortho-methoxypolyimides. RSC Advances, 2015, 5, 102261-102276.	3.6	21
114	Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Tröger׳s base. Journal of Membrane Science, 2015, 480, 104-114.	8.2	67
115	The electrochemical performance of Ni-added Li3V2(PO4)3/graphene composites as cathode material for Li-ion batteries. Materials Letters, 2015, 145, 83-86.	2.6	8
116	Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. Journal of Membrane Science, 2015, 479, 204-212.	8.2	112
117	Facile synthesis of monodisperse poly(MAA/EGDMA)/Fe ₃ O ₄ hydrogel microspheres with hollow structures for drug delivery systems: the hollow structure formation mechanism and effects of various metal ions on structural changes. RSC Advances, 2015, 5, 10081-10088.	3.6	21
118	Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 2015, 282, 211-222.	7.8	36
119	Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. Journal of Membrane Science, 2015, 492, 257-262.	8.2	54
120	Mechanically Tough, Thermally Rearranged (TR) Random/Block Poly(benzoxazole- <i>co</i> i>-imide) Gas Separation Membranes. Macromolecules, 2015, 48, 5286-5299.	4.8	78
121	The effect of SiO2 nanoparticles in Li3V2(PO4)3/graphene as a cathode material for Li-ion batteries. Materials Letters, 2015, 160, 206-209.	2.6	9
122	Soluble sulfonated polybenzothiazoles containing naphthalene for use as proton exchange membranes. Journal of Membrane Science, 2015, 490, 346-353.	8.2	27
123	Crystalline polymorphism in poly(vinylidenefluoride) membranes. Progress in Polymer Science, 2015, 51, 94-126.	24.7	305
124	Cross-Linked Thermally Rearranged Poly(benzoxazole- <i>co</i> -imide) Membranes Prepared from <i>ortho</i> -Hydroxycopolyimides Containing Pendant Carboxyl Groups and Gas Separation Properties. Macromolecules, 2015, 48, 2603-2613.	4.8	90
125	Thermally Rearranged Poly(benzoxazole- <i>co</i> -imide) Membranes with Superior Mechanical Strength for Gas Separation Obtained by Tuning Chain Rigidity. Macromolecules, 2015, 48, 2194-2202.	4.8	98
126	Anisotropic radio-chemically pore-filled anion exchange membranes for solid alkaline fuel cell (SAFC). Journal of Membrane Science, 2015, 495, 206-215.	8.2	26

#	Article	IF	CITATIONS
127	New aromatic polyamides and polyimides having an adamantane bulky group. Materials Today Communications, 2015, 5, 23-31.	1.9	36
128	The electrochemical performance of transition metal and graphene added Li3V2(PO4)3 cathode material for Li-ion Batteries. Materials Letters, 2015, 160, 194-199.	2.6	6
129	Rational molecular design of PEOlated ladder-structured polysilsesquioxane membranes for high performance CO ₂ removal. Chemical Communications, 2015, 51, 15308-15311.	4.1	34
130	Thermally rearranged polybenzoxazoles and poly(benzoxazole-co-imide)s from ortho-hydroxyamine monomers for high performance gas separation membranes. Journal of Membrane Science, 2015, 493, 329-339.	8.2	35
131	Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chemistry, 2015, 17, 5196-5205.	9.0	229
132	Simulation and feasibility study of using thermally rearranged polymeric hollow fiber membranes for various industrial gas separation applications. Journal of Membrane Science, 2015, 496, 229-241.	8.2	19
133	Highly lithium-ion conductive battery separators from thermally rearranged polybenzoxazole. Chemical Communications, 2015, 51, 2068-2071.	4.1	31
134	The effect of titanium in Li ₃ V ₂ (PO ₄) ₃ /graphene composites as cathode material for high capacity Li-ion batteries. RSC Advances, 2015, 5, 4872-4879.	3.6	22
135	Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science, 2015, 43, 1-32.	24.7	377
136	Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent. Journal of Membrane Science, 2015, 473, 128-136.	8.2	64
137	Gas sorption and transport in thermally rearranged polybenzoxazole membranes derived from polyhydroxylamides. Journal of Membrane Science, 2015, 474, 122-131.	8.2	38
138	Modeling of Multicomponent Mixture Separation Processes Using Hollowfiber Membrane. Korean Chemical Engineering Research, 2015, 53, 22-30.	0.2	0
139	Structural influence of hydrophobic diamine in sulfonated poly(sulfide sulfone imide) copolymers on medium temperature PEM fuel cell. Polymer, 2014, 55, 1317-1326.	3.8	34
140	Synthesis and electrochemical performance of high-capacity 0.34Li2MnO3·0.66LiMn0.63Ni0.24Co0.13O2 cathode materials using a Couette–Taylor reactor. Materials Research Bulletin, 2014, 58, 223-228.	5.2	6
141	Swelling agent adopted decal transfer method for membrane electrode assembly fabrication. Journal of Power Sources, 2014, 258, 272-280.	7.8	11
142	Recent progress in fluoropolymers for membranes. Progress in Polymer Science, 2014, 39, 164-198.	24.7	402
143	Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells. Journal of Power Sources, 2014, 262, 162-168.	7.8	15
144	Effect of crosslinking on the durability and electrochemical performance of sulfonated aromatic polymer membranes at elevated temperatures. International Journal of Hydrogen Energy, 2014, 39, 4459-4467.	7.1	20

#	Article	IF	CITATIONS
145	Intrinsically Microporous Soluble Polyimides Incorporating Tröger's Base for Membrane Gas Separation. Macromolecules, 2014, 47, 3254-3262.	4.8	219
146	Engineering evaluation of CO2 separation by membrane gas separation systems. Journal of Membrane Science, 2014, 454, 305-315.	8.2	81
147	Effect of Isomerism on Molecular Packing and Gas Transport Properties of Poly(benzoxazole- <i>co</i> -imide)s. Macromolecules, 2014, 47, 7947-7957.	4.8	76
148	A Simulation Study on OH-Containing Polyimide (HPI) and Thermally Rearranged Polybenzoxazoles (TR-PBO): Relationship between Gas Transport Properties and Free Volume Morphology. Journal of Physical Chemistry B, 2014, 118, 2746-2757.	2.6	63
149	Enhanced electrochemical performance of Li3V2(PO4)3/Ag–graphene composites as cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 7873.	10.3	28
150	Durable Sulfonated Poly(benzothiazole- <i>co</i> -benzimidazole) Proton Exchange Membranes. Macromolecules, 2014, 47, 6355-6364.	4.8	49
151	EB-crosslinked SPEEK electrolyte membrane with 1,4-butanediol divinyl ether/triallyl isocyanurate for fuel cell application. Journal of Membrane Science, 2014, 469, 209-215.	8.2	21
152	PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: Effect of PVDF molecular weight. Journal of Membrane Science, 2014, 471, 237-246.	8.2	97
153	Molecular modeling of poly(benzoxazole-co-imide) membranes: A structure characterization and performance investigation. Journal of Membrane Science, 2014, 454, 1-11.	8.2	55
154	Gas sorption, diffusion, and permeation in thermally rearranged poly(benzoxazole-co-imide) membranes. Journal of Membrane Science, 2014, 453, 556-565.	8.2	44
155	Highly proton-conductive thermally rearranged polybenzoxazole for medium-temperature and low-humidity polymer electrolyte fuel cells. Journal of Power Sources, 2014, 247, 286-293.	7.8	13
156	Ultra-thin Al2O3 coating on the acid-treated 0.3Li2MnO3â«0.7LiMn0.60Ni0.25Co0.15O2 electrode for Li-ion batteries. Journal of Alloys and Compounds, 2014, 608, 110-117.	5 . 5	32
157	Thermally rearranged polybenzoxazoles membranes with biphenyl moieties: Monomer isomeric effect. Journal of Membrane Science, 2014, 450, 369-379.	8.2	80
158	The Electrochemical Performance of Li ₃ /Graphene Nano-powder Composites as Cathode Material for Li-ion Batteries. Journal of Electrochemical Science and Technology, 2014, 5, 109-114.	2.2	5
159	Surface Modification of Proton Exchange Membrane by Introduction of Excessive Amount of Nanosized Silica. Membrane Journal, 2014, 24, 301-310.	0.4	1
160	The Electrochemical Performance of Li3V2(PO4)3/Graphene Nano-powder Composites as Cathode Material for Li-ion Batteries. Journal of Electrochemical Science and Technology, 2014, 5, 109-114.	2.2	1
161	Durable Sulfonated Poly(arylene sulfide sulfone nitrile)s Containing Naphthalene Units for Direct Methanol Fuel Cells (DMFCs). Macromolecules, 2013, 46, 3452-3460.	4.8	106
162	Oneâ€Pot Templateâ€Free Synthesis of Monodisperse Hollow Hydrogel Microspheres and their Resulting Properties. Macromolecular Rapid Communications, 2013, 34, 1243-1248.	3.9	9

#	Article	IF	Citations
163	Cross-Linked Thermally Rearranged Poly(benzoxazole- <i>co</i> i>-imide) Membranes for Gas Separation. Macromolecules, 2013, 46, 8179-8189.	4.8	112
164	Sulfonated Poly(arylene sulfide sulfone nitrile) Multiblock Copolymers with Ordered Morphology for Proton Exchange Membranes. Macromolecules, 2013, 46, 7797-7804.	4.8	75
165	Architecturing Nanospace via Thermal Rearrangement for Highly Efficient Gas Separations. Journal of Physical Chemistry C, 2013, 117, 24654-24661.	3.1	14
166	Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. Journal of Membrane Science, 2013, 434, 137-147.	8.2	171
167	High performance polymer membranes for CO2 separation. Current Opinion in Chemical Engineering, 2013, 2, 238-244.	7.8	84
168	Thermally rearranged (TR) poly(benzoxazole-co-amide) membranes for hydrogen separation derived from $3,38^{2}$ -dihydroxy- $4,48^{2}$ -diamino-biphenyl (HAB), $4,48^{2}$ -oxydianiline (ODA) and isophthaloyl chloride (IPCl). Journal of Membrane Science, 2013, 446, 294-302.	8.2	64
169	Polymer Rigidity Improves Microporous Membranes. Science, 2013, 339, 284-285.	12.6	223
170	Sorption and transport of small gas molecules in thermally rearranged (TR) polybenzoxazole membranes based on 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (bisAPAF) and 4,4′-hexafluoroisopropylidene diphthalic anhydride (6FDA). Journal of Membrane Science, 2013, 441, 1-8.	8.2	65
171	A capillary water retention effect to improve medium-temperature fuel cell performance. Electrochemistry Communications, 2013, 31, 120-124.	4.7	34
172	Effect of the chemical structure of various diamines on the gas separation of thermally rearranged poly(benzoxazole-co-imide) (TR-PBO-co-I) membranes. Journal of Membrane Science, 2013, 444, 365-377.	8.2	53
173	Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. Journal of Membrane Science, 2013, 444, 223-236.	8.2	205
174	The effects of EB-irradiation doses on the properties of crosslinked SPEEK membranes. Journal of Membrane Science, 2013, 430, 87-95.	8.2	26
175	Polyethylene-based radiation grafted anion-exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2013, 441, 148-157.	8.2	91
176	Proton-conducting membranes from poly(ether sulfone)s grafted with sulfoalkylamine. Journal of Membrane Science, 2013, 427, 443-450.	8.2	69
177	Poly(acrylic acid)-Grafted Fluoropolymer Films for Highly Sensitive Fluorescent Bioassays. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2155-2160.	8.0	18
178	Inverse Gas Chromatographic Study of Sorption Thermodynamics in Thermally Rearranged Polymer Based on 2,2-Bis(3-amino-4-hydroxyphenyl)-hexafluoropropane and 4,4′-Hexafluoroisopropylidene Diphthalic Anhydride. Industrial & Engineering Chemistry Research, 2013, 52, 10467-10475.	3.7	12
179	Electron beam irradiation effects on green biodegradable poly($l\mu$ -caprolactone) films. Journal of Adhesion Science and Technology, 2013, 27, 1374-1381.	2.6	3
180	Simultaneous Microfabrication and Tuning of the Permselective Properties in Microporous Polymers Using Xâ€ray Lithography. Small, 2013, 9, 2277-2282.	10.0	12

#	Article	IF	CITATIONS
181	Practical Multigram Synthesis of 3,3,3',3'-Tetramethyl-1,1'-spirobisindane-5,5'-diamino-6,6'-diol. Bulletin of the Korean Chemical Society, 2013, 34, 3888-3890.	1.9	2
182	Radiolytic Fabrication and Characterization of PTFE-g-PAA as the Supporters for the Reinforced Composite Fuel Cell Membrane. Porrime, 2013, 37, 649-655.	0.2	3
183	Tuning microcavities in thermally rearranged polymer membranes for CO2 capture. Physical Chemistry Chemical Physics, 2012, 14, 4365.	2.8	126
184	A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer. Journal of Materials Chemistry, 2012, 22, 25093.	6.7	71
185	Solvent-assisted thermal annealing of disulfonated poly(arylene ether sulfone) random copolymers for low humidity polymer electrolyte membrane fuel cells. RSC Advances, 2012, 2, 1025-1032.	3.6	16
186	A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers. Energy and Environmental Science, 2012, 5, 5346-5355.	30.8	131
187	Thermal Treatment Effect on the Structure and Property Change between Hydroxy-Containing Polyimides (HPIs) and Thermally Rearranged Polybenzoxazole (TR-PBO). Journal of Physical Chemistry B, 2012, 116, 12864-12877.	2.6	61
188	Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide) Tj ETQq0 0 0 rg	BT/Oyerlo	ck ₉₀ 0 Tf 50 4
189	The relationship between the chemical structure and thermal conversion temperatures of thermally rearranged (TR) polymers. Polymer, 2012, 53, 2783-2791.	3.8	77
190	Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether) Tj ETQq0 0 0 rgBT	/Oyerlock 7.8	10 Tf 50 382
191	Formation of thermally rearranged (TR) polybenzoxazoles: Effect of synthesis routes and polymer form. European Polymer Journal, 2012, 48, 1313-1322.	5.4	71
192	Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. , 2012, , 265-275.		1
193	Phenyltrimethylammonium Functionalized Polysulfone Anion Exchange Membranes. Macromolecules, 2012, 45, 2411-2419.	4.8	167
194	Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	30
195	Simulated economics assessment of hollow fiber CO2 separation modules. Korean Journal of Chemical Engineering, 2012, 29, 435-443.	2.7	0
196	Process intensification and fuel cells using a Multi-Source Multi-Product approach. Chemical Engineering and Processing: Process Intensification, 2012, 51, 88-108.	3.6	7
197	Disulfonated poly(arylene ether sulfone) random copolymer thin film composite membrane fabricated using a benign solvent for reverse osmosis applications. Journal of Membrane Science, 2012, 389, 363-371.	8.2	41
198	Hydrophilic silica additives for disulfonated poly(arylene ether sulfone) random copolymer membranes. Journal of Membrane Science, 2012, 392-393, 157-166.	8.2	10

#	Article	IF	Citations
199	Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403-404, 169-178.	8.2	124
200	Poly(arylene ether sulfone) proton exchange membranes with flexible acid side chains. Journal of Membrane Science, 2012, 405-406, 68-78.	8.2	94
201	Influence of processing history on water and salt transport properties of disulfonated polysulfone random copolymers. Polymer, 2012, 53, 1581-1592.	3.8	46
202	Fabrication of Silane-crosslinked Proton Exchange Membranes by Radiation and Evaluation of Fuel Cell Performance. Porrime, 2012, 36, 525-530.	0.2	2
203	Efficient Immobilization and Patterning of Biomolecules on Poly(ethylene terephthalate) Films Functionalized by Ion Irradiation for Biosensor Applications. ACS Applied Materials & Interfaces, 2011, 3, 2235-2239.	8.0	21
204	Thermally Rearranged (TR) Poly(etherâ^benzoxazole) Membranes for Gas Separation. Macromolecules, 2011, 44, 1156-1165.	4.8	145
205	Densely Sulfophenylated Segmented Copoly(arylene ether sulfone) Proton Exchange Membranes. Macromolecules, 2011, 44, 4901-4910.	4.8	94
206	Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. Journal of Materials Chemistry, 2011, 21, 7480.	6.7	93
207	Metal–organic framework membranes fabricated via reactive seeding. Chemical Communications, 2011, 47, 737-739.	4.1	350
208	Fluorene-Based Poly(arylene ether sulfone)s Containing Clustered Flexible Pendant Sulfonic Acids as Proton Exchange Membranes. Macromolecules, 2011, 44, 7296-7306.	4.8	211
209	Optimal catalyst layer structure of polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy, 2011, 36, 9876-9885.	7.1	98
210	Modeling and control of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2011, 28, 41-48.	2.7	11
211	Modeling and simulation of hollow fiber CO2 separation modules. Korean Journal of Chemical Engineering, 2011, 28, 1497-1504.	2.7	17
212	Enhancement of Proton Transport by Nanochannels in Combâ€Shaped Copoly(arylene ether sulfone)s. Angewandte Chemie - International Edition, 2011, 50, 9158-9161.	13.8	157
213	Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode. Journal of Power Sources, 2011, 196, 6997-7001.	7.8	51
214	Improvement in thermal stability of NaA zeolite composite membrane by control of intermediate layer structure. Journal of Membrane Science, 2011, 366, 229-236.	8.2	20
215	Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 2011, 36, 1443-1498.	24.7	597
216	Electron Beam-Induced Modification of Poly(dimethyl siloxane). Porrime, 2011, 35, 157-160.	0.2	3

#	Article	IF	CITATIONS
217	Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. Journal of Membrane Science, 2010, 357, 143-151.	8.2	130
218	Synthesis, ethanol dehydration and thermal stability of NaA zeolite/alumina composite membranes with narrow non-zeolitic pores and thin intermediate layer. Journal of Membrane Science, 2010, 364, 138-148.	8.2	40
219	Preparation and biocompatibility study of gelatin/kappa-carrageenan scaffolds. Macromolecular Research, 2010, 18, 29-34.	2.4	37
220	Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359, 11-24.	8.2	330
221	Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. Journal of Membrane Science, 2010, 349, 358-368.	8.2	149
222	Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion. Journal of Power Sources, 2010, 195, 1325-1332.	7.8	33
223	Numerical analysis of catalyst agglomerates and liquid water transport in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2010, 35, 8433-8445.	7.1	26
224	Highly permeable and selective poly(benzoxazole-co-imide) membranes for gas separation. Journal of Membrane Science, 2010, 350, 301-309.	8.2	124
225	Development of novel surface modified phase inversion membranes having hydrophobic surface-modifying macromolecule (nSMM) for vacuum membrane distillation. Desalination, 2010, 261, 300-312.	8.2	52
226	Preparation of sulfonated crosslinked poly(2,6â€dimethylâ€1,4â€phenylene oxide) membranes for direct methanol fuel cells by using electron beam irradiation. Journal of Polymer Science Part A, 2010, 48, 2725-2731.	2.3	15
227	Thermally Rearranged (TR) Polybenzoxazole: Effects of Diverse Imidization Routes on Physical Properties and Gas Transport Behaviors. Macromolecules, 2010, 43, 7657-7667.	4.8	226
228	Phase Separation and Water Channel Formation in Sulfonated Block Copolyimide. Journal of Physical Chemistry B, 2010, 114, 12036-12045.	2.6	77
229	Polymer Electrolyte Membranes Derived from New Sulfone Monomers with Pendent Sulfonic Acid Groups. Macromolecules, 2010, 43, 9810-9820.	4.8	102
230	Transplantation of mesenchymal stem cells within a poly(lactideâ€∢i>coâ€É>â€caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. European Journal of Heart Failure, 2009, 11, 147-153.	7.1	135
231	Synthesis of Crosslinked Sulfonated Poly(phenylene sulfide sulfone nitrile) for Direct Methanol Fuel Cell Applications. Macromolecular Rapid Communications, 2009, 30, 64-68.	3.9	61
232	Nafion \hat{A}^{\otimes} nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance. Journal of Power Sources, 2009, 194, 646-654.	7.8	35
233	Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. Journal of Membrane Science, 2009, 344, 288-296.	8.2	27
234	Modified Sulfonated Poly(arylene ether sulfone) Membranes Prepared via a Radiation Grafting Method for Fuel Cell Application. Macromolecular Research, 2009, 17, 825-828.	2.4	10

#	Article	IF	Citations
235	In vitro andin vivo characterization of a coronary stent coated with an elastic biodegradable polymer for the sustained release of paclitaxel. Macromolecular Research, 2009, 17, 1039-1042.	2.4	5
236	Chemically Tuned Anode with Tailored Aqueous Hydrocarbon Binder for Direct Methanol Fuel Cells. Langmuir, 2009, 25, 8217-8225.	3.5	15
237	Surface-Fluorinated Proton-Exchange Membrane with High Electrochemical Durability for Direct Methanol Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1113-1121.	8.0	54
238	Poly (Vinyl Alcohol) Based Polymer Electrolyte Membranes Crosslinked with Sulfosuccinic Acid. Transactions of the Materials Research Society of Japan, 2009, 34, 375-378.	0.2	0
239	Gas permeation properties of hydroxyl-group containing polyimide membranes. Macromolecular Research, 2008, 16, 555-560.	2.4	83
240	Tissue engineering using a cyclic strain bioreactor and gelatin/PLCL scaffolds. Macromolecular Research, 2008, 16, 567-569.	2.4	19
241	Preparation and characterization of temperature-sensitive poly(N-isopropylacrylamide)-g-poly(L-lactide-co-ε-caprolactone) nanofibers. Macromolecular Research, 2008, 16, 139-148.	2.4	13
242	Control of Polyaniline Particle Shapes. Macromolecular Chemistry and Physics, 2008, 209, 1083-1093.	2.2	8
243	Nanofibrous Poly(lactic acid)/Hydroxyapatite Composite Scaffolds for Guided Tissue Regeneration. Macromolecular Bioscience, 2008, 8, 328-338.	4.1	109
244	Development of Electroactive and Elastic Nanofibers that contain Polyaniline and Poly(<scp>L</scp> â€lactideâ€ <i>co</i> àê€ <i>ûµ</i> aprolactone) for the Control of Cell Adhesion. Macromolecular Bioscience, 2008, 8, 627-637.	4.1	176
245	Synthesis of microphaseâ€separated poly(styreneâ€∢i>coàêsodium styrene sulfonate) membranes using amphiphilic urethane acrylate nonionomers as an reactive compatibilizer. Journal of Applied Polymer Science, 2008, 107, 2150-2158.	2.6	10
246	Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications. Journal of Membrane Science, 2008, 313, 199-206.	8.2	52
247	Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole). Journal of Power Sources, 2008, 175, 724-731.	7.8	55
248	Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials. Desalination, 2008, 233, 88-95.	8.2	18
249	Passive DMFC system using a proton conductive hydrocarbon membrane. Desalination, 2008, 233, 210-217.	8.2	22
250	<i>In Vitro</i> Osteogenic Differentiation of Human Mesenchymal Stem Cells and <i>In Vivo</i> Bone Formation in Composite Nanofiber Meshes. Tissue Engineering - Part A, 2008, 14, 2105-2119.	3.1	125
251	A Novel Thermoresponsive Hydrogel with Ion-Recognition Property through Supramolecular Hostâ^'Guest Complexation. Journal of Physical Chemistry B, 2008, 112, 1112-1118.	2.6	74
252	Electrospun gelatin/poly(L-lactide-co-Îμ-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 339-357.	3.5	71

#	Article	lF	Citations
253	Nanoparticles in Cancer Drug Delivery Systems. , 2008, , 143-169.		1
254	Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions. Science, 2007, 318, 254-258.	12.6	919
255	Synthesis of needle-like polyanilines. Journal of Vinyl and Additive Technology, 2007, 13, 76-86.	3.4	6
256	Preparation of porous collagen/hyaluronic acid hybrid scaffolds for biomimetic functionalization through biochemical binding affinity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 506-518.	3.4	23
257	Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials, 2007, 28, 1115-1122.	11.4	211
258	Sulfonated poly(arylene ether sulfone)–silica nanocomposite membrane for direct methanol fuel cell (DMFC). Journal of Membrane Science, 2007, 303, 258-266.	8.2	102
259	Gas separation of pyrolyzed polymeric membranes: Effect of polymer precursor and pyrolysis conditions. Macromolecular Research, 2007, 15, 565-574.	2.4	12
260	Biotin-conjugated block copolymeric nanoparticles as tumor-targeted drug delivery systems. Macromolecular Research, 2007, 15, 646-655.	2.4	62
261	Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Polymer, 2007, 48, 1718-1728.	3.8	162
262	Water Sorption, Proton Conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic Acid (BES). Macromolecules, 2006, 39, 755-764.	4.8	155
263	Polymer Designs with High Gas Permeable Characteristics for Small Gas Separations. Membrane, 2006, 31, 161-164.	0.0	1
264	Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials, 2006, 27, 2951-2961.	11.4	349
265	Synthesis of highly fluorinated poly(arylene ether)s copolymers for proton exchange membrane materialsâ~†. Journal of Membrane Science, 2006, 281, 111-120.	8.2	75
266	Water-stable crosslinked sulfonated polyimide–silica nanocomposite containing interpenetrating polymer network. Journal of Power Sources, 2006, 163, 339-348.	7.8	47
267	Synthesis of a new type of surface modifying macromolecules (nSMM) and characterization and testing of nSMM blended membranes for membrane distillation. Journal of Membrane Science, 2006, 277, 177-185.	8.2	86
268	Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes. Journal of Membrane Science, 2006, 280, 116-123.	8.2	72
269	Preparation of organic–inorganic nanocomposite membrane using a reactive polymeric dispersant and compatibilizer: Proton and methanol transport with respect to nano-phase separated structure. Journal of Membrane Science, 2006, 283, 172-181.	8.2	44
270	Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. Journal of Membrane Science, 2006, 285, 432-443.	8.2	114

#	Article	IF	CITATIONS
271	Preparation of poly(vinyl phosphate-b-styrene) copolymers and its blend with PPO as proton exchange membrane for DMFC applications. Solid State Ionics, 2006, 177, 1083-1090.	2.7	43
272	Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromolecular Research, 2006, 14, 87-93.	2.4	97
273	Novel sulfonated poly(arylene ether ketone) containing benzoxazole membranes for proton exchange membrane fuel cell. Macromolecular Research, 2006, 14, 438-442.	2.4	23
274	Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymers containing carboxyl groups for direct methanol fuel cells. Journal of Membrane Science, 2006, 278, 428-436.	8.2	85
275	Poly(ethylene glycol)/poly($\hat{l}\mu$ -caprolactone) diblock copolymeric nanoparticles for non-viral gene delivery: The role of charge group and molecular weight in particle formation, cytotoxicity and transfection. Journal of Controlled Release, 2006, 113, 173-182.	9.9	39
276	Preparation of alginate/poly(N-isopropylacrylamide) semi-interpenetrating and fully interpenetrating polymer network hydrogels with \hat{I}^3 -ray irradiation and their swelling behaviors. Journal of Applied Polymer Science, 2006, 100, 4439-4446.	2.6	33
277	Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 388-397.	3.4	41
278	Synthesis and Characterization of Highly Soluble Poly(aryl ether ketone-benzoxazole) Copolymers with Hexafluoroisopropylidene Moieties by Direct Copolymerization. Macromolecular Chemistry and Physics, 2006, 207, 1880-1887.	2.2	12
279	Synthesis and Characterization of a Novel Thermo-Sensitive Copolymer of N-Isopropylacrylamide and Dibenzo-18-crown-6-diacrylamide. Macromolecular Rapid Communications, 2006, 27, 2072-2077.	3.9	25
280	Preparation and characterization of carbon molecular sieve membranes derived from BTDA–ODA polyimide and their gas separation properties. Journal of Membrane Science, 2005, 255, 265-273.	8.2	97
281	Annealing effect of sulfonated polysulfone ionomer membranes on proton conductivity and methanol transport. Journal of Membrane Science, 2005, 247, 103-110.	8.2	70
282	Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. Journal of Membrane Science, 2005, 251, 159-167.	8.2	119
283	Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior. Journal of Molecular Structure, 2005, 739, 179-190.	3.6	18
284	Preparation and characterization of methoxy poly(ethylene glycol)/poly($\hat{l}\mu$ -caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials, 2005, 26, 1053-1061.	11.4	263
285	Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ionics, 2005, 176, 117-126.	2.7	219
286	Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials, 2005, 26, 1961-1968.	11.4	196
287	Products by the sphingosine kinase/sphingosine 1-phosphate (S1P) lyase pathway but not S1P stimulate mitogenesis. Genes To Cells, 2005, 10, 605-615.	1.2	50
288	Folate-conjugated methoxy poly(ethylene glycol)/poly(É)-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. Journal of Controlled Release, 2005, 109, 158-168.	9.9	234

#	Article	lF	Citations
289	Indomethacin-loaded methoxy poly(ethylene glycol)/poly(D,L-lactide) amphiphilic diblock copolymeric nanospheres: Pharmacokinetic and toxicity studies in rodents. Journal of Biomedical Materials Research - Part A, 2005, 74A, 581-590.	4.0	19
290	Fabrication and Characterization of Nanoporous Carbon/Silica Membranes. Advanced Materials, 2005, 17, 477-483.	21.0	79
291	Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(acrylic acid-co-maleic acid). Macromolecular Research, 2005, 13, 314-320.	2.4	15
292	Preparation and characterization of pH-sensitive poly(ethylene oxide) grafted methacrylic acid and acrylic acid hydrogels by \hat{l}^3 -ray irradiation. Macromolecular Research, 2005, 13, 327-333.	2.4	16
293	Aging effect of poly(vinyl alcohol) membranes crosslinked with poly(acrylic acid-co-maleic acid). Macromolecular Research, 2005, 13, 135-140.	2.4	22
294	Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials, 2005, 26, 1405-1411.	11.4	203
295	Novel preparative method for porous hydrogels using overrun process. Polymer International, 2005, 54, 537-543.	3.1	35
296	Synthesis of sulfonated poly(imidoaryl ether sulfone) membranes for polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A, 2005, 43, 5620-5631.	2.3	22
297	The Influence of Membrane Surface Properties on Fouling in a Membrane Bioreactor for Wastewater Treatment. Separation Science and Technology, 2005, 39, 833-854.	2.5	43
298	Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application. Industrial & Engineering Chemistry Research, 2005, 44, 7617-7626.	3.7	228
299	THE STRUCTURAL EFFECT ON PROTON CONDUCTIVITY AND METHANOL PERMEABILITY OF SULFONATED POLYIMIDE MEMBRANE AS POTENTIAL PEM. , 2004, , .		0
300	Novel Carbon-Silica Membranes for Improved Gas Separation. ACS Symposium Series, 2004, , 190-202.	0.5	1
301	Biocompatibility and biodegradation of cross-linked gelatin/hyaluronic acid sponge in rat subcutaneous tissue. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 201-214.	3.5	40
302	Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials, 2004, 25, 4699-4707.	11.4	144
303	In vivo biocompatibilty and degradation behavior of elastic poly(l-lactide-co-Îμ-caprolactone) scaffolds. Biomaterials, 2004, 25, 5939-5946.	11.4	230
304	Preparation of alginate/poly(N-isopropylacrylamide) hydrogels using gamma-ray irradiation grafting. Macromolecular Research, 2004, 12, 269-275.	2.4	19
305	Preparation and characterization of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK)/silica hybrid membranes for direct methanol fuel cell applications. Macromolecular Research, 2004, 12, 413-421.	2.4	30
306	Anti-complement effects of anion-substituted poly(vinyl alcohol) membranes. Macromolecular Research, 2004, 12, 46-52.	2.4	3

#	Article	IF	Citations
307	Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)–hyaluronic acid in solution. Biosensors and Bioelectronics, 2004, 19, 531-536.	10.1	50
308	Proliferation rate of fibroblast cells on polyethylene surfaces with wettability gradient. Journal of Applied Polymer Science, 2004, 92, 599-606.	2.6	67
309	Temperature/pH-sensitive comb-type graft hydrogels composed of chitosan and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2004, 92, 2612-2620.	2.6	102
310	Response of human chondrocytes on polymer surfaces with different micropore sizes for tissue-engineered cartilage. Journal of Applied Polymer Science, 2004, 92, 2784-2790.	2.6	15
311	Preparation and characterization of PVDF/silica hybrid membranes containing sulfonic acid groups. Journal of Applied Polymer Science, 2004, 93, 209-218.	2.6	57
312	Pyrolytic carbon membranes containing silica derived from poly(imide siloxane): the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases. Journal of Membrane Science, 2004, 235, 87-98.	8.2	52
313	Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. Journal of Membrane Science, 2004, 229, 117-127.	8.2	131
314	The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups. Journal of Membrane Science, 2004, 235, 139-146.	8.2	76
315	Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science, 2004, 238, 143-151.	8.2	383
316	Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science, 2004, 240, 37-48.	8.2	402
317	Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. Journal of Membrane Science, 2004, 243, 9-17.	8.2	123
318	Preparation and characteristics of hybrid scaffolds composed of \hat{l}^2 -chitin and collagen. Biomaterials, 2004, 25, 2309-2317.	11.4	91
319	Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 645-660.	3.5	161
320	Morphology of Elastic Poly(I-lactide-co- $\hat{l}\mu$ -caprolactone) Copolymers and in Vitro and in Vivo Degradation Behavior of Their Scaffolds. Biomacromolecules, 2004, 5, 1303-1309.	5.4	161
321	Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D, L-lactide-co-glycolide) for tissue-engineered bone. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1003-1017.	3.5	66
322	THERMO-CONTROLLED HIGH PERFORMANCE GAS SEPARATION MEMBRANE MATERIAL: NOVEL ORGANIC MOLECULAR SIEVE MEMBRANE. , 2004, , .		0
323	CARBON-SILICA MEMBRANES FOR IMPROVED GAS SEPARATION. , 2004, , .		0
324	Molecular thermodynamics approach on phase equilibria of dendritic polymer systems. Korean Journal of Chemical Engineering, 2003, 20, 375-386.	2.7	4

#	Article	IF	CITATIONS
325	Artificial dermis composed of gelatin, hyaluronic acid and $(1\hat{a}^{\dagger}, 3), (1\hat{a}^{\dagger}, 6), \hat{1}^{2}$ -glucan. Macromolecular Research, 2003, 11, 368-374.	2.4	17
326	Plasma protein adsorption to anion substituted poly(vinyl alcohol) membranes. Macromolecular Research, 2003, 11, 451-457.	2.4	10
327	Evaluation of a galactose-carrying gelatin sponge for hepatocytes culture and transplantation. Journal of Biomedical Materials Research Part B, 2003, 67A, 733-741.	3.1	28
328	Swelling characterizations of chitosan and polyacrylonitrile semi-interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2003, 87, 2011-2015.	2.6	58
329	Thermal properties of poly(vinyl alcohol)/poly(diallyldi-methylammonium chloride) interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 88, 1346-1349.	2.6	2
330	Thermal characteristics of IPNs composed of poly(propylene glycol) and poly(acrylic acid). Journal of Applied Polymer Science, 2003, 88, 2570-2574.	2.6	2
331	Preparation of chlorinated poly(vinyl chloride)-g-poly(N-vinyl-2-pyrrolidinone) membranes and their water permeation properties. Journal of Applied Polymer Science, 2003, 88, 3188-3195.	2.6	14
332	Electrochemical behavior of an interpenetrating polymer network hydrogel composed of poly(propylene glycol) and poly(acrylic acid). Journal of Applied Polymer Science, 2003, 89, 2301-2305.	2.6	38
333	Electroactive characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl) Tj ETQq1 1	0.784314 2.6	rgBT /Overlo
334	Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behaviors. Journal of Applied Polymer Science, 2003, 90, 925-932.	2.6	50
335	Water sorption of poly(vinyl alcohol)/ poly(diallyldimethylammonium chloride) interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2003, 90, 1389-1392.	2.6	10
336	Preparation and characterization of thermosensitive poly(N-isopropylacrylamide)/poly(ethylene oxide) semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 3032-3036.	2.6	32
337	Swelling kinetics of modified poly(vinyl alcohol) hydrogels. Journal of Applied Polymer Science, 2003, 90, 3310-3313.	2.6	25
338	Thermal characterizations of semi-interpenetrating polymer networks composed of poly(ethylene) Tj ETQq0 0 0	rgBT/Over 2.6	rlock 10 Tf 50
339	Thermal properties of poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 88, 2719-2719.	2.6	0
340	Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties. Journal of Membrane Science, 2003, 226, 145-158.	8.2	52
341	The effect of surface wettability on induction and growth of neurites from the PC-12 cell on aÂpolymer surface. Journal of Colloid and Interface Science, 2003, 259, 228-235.	9.4	141
342	Toxic characteristics of methoxy poly(ethylene glycol)/poly($\hat{l}\mu$ -caprolactone) nanospheres; in vitro and in vivo studies in the normal mice. Biomaterials, 2003, 24, 55-63.	11.4	102

#	Article	IF	CITATIONS
343	Bio-artificial skin composed of gelatin and (1â†'3), (1â†'6)-β-glucan. Biomaterials, 2003, 24, 2503-2511.	11.4	139
344	Pyrolytic carbon–silica membrane: a promising membrane material for improved gas separation. Journal of Membrane Science, 2003, 213, 263-272.	8.2	69
345	Preparation of PVP immobilized microporous chlorinated polyvinyl chloride membranes on fabric and their hydraulic permeation behavior. Journal of Membrane Science, 2003, 214, 311-321.	8.2	53
346	Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties. Journal of Membrane Science, 2003, 220, 59-73.	8.2	96
347	Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid–poly(vinyl alcohol) interpenetrating polymer networks. Reactive and Functional Polymers, 2003, 55, 291-298.	4.1	82
348	Electrical sensitive behavior of poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) IPN hydrogel. Sensors and Actuators B: Chemical, 2003, 88, 286-291.	7.8	46
349	Synthesis and Characterization of Poly(l-lactide)â^Poly(l̂μ-caprolactone) Multiblock Copolymers. Macromolecules, 2003, 36, 5585-5592.	4.8	160
350	Effect of a UV/Ozone Treatment on Siloxane-Containing Copolyimides:Â Surface Modification and Gas Transport Characteristics. Chemistry of Materials, 2003, 15, 2346-2353.	6.7	38
351	Microfiltration of Activated Sludge Using Modified PVC Membranes: Effect of Pulsing on Flux Recovery. Separation Science and Technology, 2003, 38, 591-612.	2.5	9
352	Novel Pyrolytic Carbon Membranes Containing Silica:Â Preparation and Characterization. Chemistry of Materials, 2002, 14, 3034-3046.	6.7	65
353	A histopathologic study of the nervous system after inhalation exposure of 1-bromopropane in rat. Toxicology Letters, 2002, 131, 195-201.	0.8	13
354	A Thermosensitive Poly(organophosphazene) Gel. Macromolecules, 2002, 35, 3876-3879.	4.8	163
355	Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 197-212.	3.5	64
356	Morphology of a Poly(imide siloxane) Segmented Copolymer/Silica Hybrid Composite. Macromolecular Rapid Communications, 2002, 23, 544.	3.9	38
357	pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). Journal of Applied Polymer Science, 2002, 83, 1128-1139.	2.6	187
358	Effects of molecular weight of polyvinylpyrrolidone on precipitation kinetics during the formation of asymmetric polyacrylonitrile membrane. Journal of Applied Polymer Science, 2002, 85, 57-68.	2.6	53
359	pH- and thermal characteristics of graft hydrogels based on chitosan and poly(dimethylsiloxane). Journal of Applied Polymer Science, 2002, 85, 2661-2666.	2.6	36
360	Preparation of microporous chlorinated poly(vinyl chloride) membrane in fabric and the characterization of their pore sizes and pore-size distributions. Journal of Applied Polymer Science, 2002, 86, 1195-1202.	2.6	38

#	Article	IF	CITATIONS
361	Gas-transport properties through cation-exchanged sulfonated polysulfone membranes. Journal of Applied Polymer Science, 2002, 86, 2611-2617.	2.6	30
362	Physical properties of lyocell fibers spun from different solution-dope phases. Journal of Applied Polymer Science, 2002, 83, 981-989.	2.6	14
363	Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface with different wettability on fibroblast behavior. Macromolecular Research, 2002, 10, 150-157.	2.4	15
364	Preparation and characterization of small intestine submucosa powder impregnated poly(L-lactide) scaffolds: the application for tissue engineered bone and cartilage. Macromolecular Research, 2002, 10, 158-167.	2.4	37
365	Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments. Journal of Membrane Science, 2002, 197, 283-296.	8.2	50
366	Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. Journal of Membrane Science, 2002, 204, 257-269.	8.2	123
367	Thermosensitive and hydrolysis-sensitive poly(organophosphazenes). Polymer International, 2002, 51, 658-660.	3.1	17
368	Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor. Process Biochemistry, 2002, 38, 279-285.	3.7	77
369	Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels. Polymer, 2002, 43, 7549-7558.	3.8	209
370	Synthesis and characterization of metal-containing sulfonated polyimide membranes and their gas separation properties. Desalination, 2002, 145, 389-392.	8.2	8
371	Surface modification of a poly(vinyl chloride) membrane by UV irradiation for reduction in sludge adsorption. Desalination, 2002, 146, 301-305.	8.2	22
372	Double crystallization behavior in dry-jet wet spinning of cellulose/N-methylmorpholine-N-oxide hydrate solutions. European Polymer Journal, 2002, 38, 109-119.	5.4	5
373	Synthesis and Characterization of Thermosensitive Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Alkylamines as Side Groups. Bulletin of the Korean Chemical Society, 2002, 23, 549-554.	1.9	6
374	Colloidal Adsorption of Bovine Serum Albumin on Porous Polypropylene-g-Poly(2-hydroxyethyl) Tj ETQq0 0 0 rgBT	/9.yerlock	10 Tf 50 22:
375	Phase Transition of Cellulose Solutions in N-Methyl Morpholine N-Oxide Hydrates. Polymer Journal, 2001, 33, 18-26.	2.7	9
376	Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene) Tj ETQq0 0 0 rgB	Г /Overlocl 8.2	₹ 10 Tf 50 14
377	Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. Journal of Membrane Science, 2001, 190, 179-193.	8.2	320
378	Surface modification of polypropylene membranes by \hat{l}^3 -ray induced graft copolymerization and their solute permeation characteristics. Journal of Membrane Science, 2001, 190, 215-226.	8.2	163

#	Article	lF	Citations
379	Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes. Journal of Membrane Science, 2001, 193, 209-225.	8.2	385
380	Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly($\hat{l}\mu$ -caprolactone) as novel anticancer drug carriers. Biomaterials, 2001, 22, 1697-1704.	11.4	217
381	Indomethacin-loaded methoxy poly(ethylene glycol)/poly(Îμ-caprolactone) diblock copolymeric nanosphere: pharmacokinetic characteristics of indomethacin in the normal Sprague–Dawley rats. Biomaterials, 2001, 22, 2049-2056.	11.4	64
382	Study on gelatin-containing artificial skin IV: a comparative study on the effect of antibiotic and EGF on cell proliferation during epidermal healing. Biomaterials, 2001, 22, 2777-2783.	11.4	44
383	Studies on gelatin-based sponges. Part III: a comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. Journal of Materials Science: Materials in Medicine, 2001, 12, 67-73.	3.6	112
384	pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N -isopropylacrylamide). Polymer, 2001, 42, 6851-6857.	3.8	266
385	REMOVAL OF ACETIC ACID WITH AMINE EXTRACTANTS FROM FERMENTATION BROTH USING HYDROPHOBIC HOLLOW-FIBER MEMBRANE CONTACTOR. Separation Science and Technology, 2001, 36, 457-471.	2.5	17
386	Permeation control through stimuli-responsive polymer membrane prepared by plasma and radiation grafting techniques., 2001,, 109-123.		3
387	Stimuli-responsive interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylic acid)., 2001,, 93-108.		1
388	Effect of Thermal History on the Phase Behavior of N-Methyl Morpholine N-Oxide Hydrates and Their Solutions of Cellulose. Polymer Journal, 2001, 33, 139-146.	2.7	14
389	Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. Journal of Applied Polymer Science, 2000, 78, 1381-1391.	2.6	201
390	Interpenetrating polymer network hydrogels based on poly(ethylene glycol) macromer and chitosan. Carbohydrate Polymers, 2000, 41, 197-205.	10.2	188
391	Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer, 2000, 41, 5713-5719.	3.8	174
392	Percolation behavior of gas permeability in rigid-flexible block copolymer membranes. Journal of Membrane Science, 2000, 177, 143-152.	8.2	29
393	Pervaporation of pyridine–water mixture through poly(acrylonitrile-co-monoacryloxyethyl) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 T
394	Morphology control of asymmetric membranes by UV irradiation on polyimide dope solution. Journal of Membrane Science, 2000, 169, 229-235.	8.2	33
395	Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(ϵ-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. Journal of Controlled Release, 2000, 65, 345-358.	9.9	156
396	Title is missing!. Journal of Materials Science, 2000, 35, 5767-5778.	3.7	57

#	Article	IF	Citations
397	beta-Chitin-based wound dressing containing silver sulfurdiazine. Journal of Materials Science: Materials in Medicine, 2000, 11, 817-823.	3.6	56
398	Radiation-induced grafting of methylmethacrylate onto ultrahigh molecular weight polyethylene and its adhesive characteristics. Journal of Materials Science: Materials in Medicine, 2000, 11, 593-600.	3.6	12
399	Status of tissue-engineering research in Korea. Journal of Artificial Organs, 2000, 3, 12-15.	0.9	O
400	Annealing Effects of Dilute Polyaniline/NMP Solution. Macromolecules, 2000, 33, 7431-7439.	4.8	57
401	Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. , 2000, 78, 1381.		2
402	Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999, 20, 409-417.	11,4	365
403	Amphiphilic diblock copolymeric nanospheres composed of methoxy poly(ethylene glycol) and glycolide: properties, cytotoxicity and drug release behaviour. Biomaterials, 1999, 20, 1033-1042.	11.4	69
404	Pervaporation of ethylene glycol–water mixtures. Journal of Membrane Science, 1999, 153, 155-162.	8.2	57
405	Pervaporation separation of methanol/methyl t-butyl ether through chitosan composite membrane modified with surfactants. Journal of Membrane Science, 1999, 157, 63-71.	8.2	87
406	Pervaporation of water/isopropanol mixtures through polyaniline membranes doped with poly(acrylic acid). Journal of Membrane Science, 1999, 159, 41-46.	8.2	66
407	Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (Pluronic)/poly(Îμ-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. Journal of Controlled Release, 1999, 62, 381-392.	9.9	94
408	Pervaporation separation of water-isopropanol mixture using carboxymethylated poly(vinyl alcohol) composite membranes. Journal of Applied Polymer Science, 1999, 72, 241-249.	2.6	71
409	Graft copolymerization of mixtures of acrylic acid and acrylamide onto polypropylene film. Journal of Applied Polymer Science, 1999, 72, 251-256.	2.6	38
410	Graft polymerization of methyl methacrylate onto radiation-peroxidized ultrahigh molecular weight polyethylene in the presence of metallic salt and acid. Journal of Applied Polymer Science, 1999, 72, 659-666.	2.6	20
411	Preparation of amphiphilic chitosan and their antimicrobial activities. Journal of Applied Polymer Science, 1999, 72, 1713-1719.	2.6	167
412	Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). Journal of Applied Polymer Science, 1999, 73, 113-120.	2.6	259
413	Properties of electroresponsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus. Journal of Applied Polymer Science, 1999, 73, 1675-1683.	2.6	147
414	Synthesis, properties, and permeation of solutes through hydrogels based on poly(ethylene) Tj ETQq0 0 0 rgBT / 1999, 73, 2151-2158.	Overlock 1 2.6	10 Tf 50 67 Td 9

1999, 73, 2151-2158.

#	Article	IF	Citations
415	pH-dependent permeation through polysulfone ultrafiltration membranes prepared by ultraviolet polymerization technique. Journal of Applied Polymer Science, 1999, 74, 75-82.	2.6	44
416	Pervaporation separation of an aqueous organic mixture through a poly(acrylonitrile-co-vinylphosphonic acid) membrane. Journal of Applied Polymer Science, 1999, 74, 83-89.	2.6	24
417	Synthesis and characterization of polyamideimide-branched siloxane and its gas-separation. Journal of Applied Polymer Science, 1999, 74, 965-973.	2.6	25
418	Drug release behavior of electrical responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus. Journal of Applied Polymer Science, 1999, 74, 1752-1761.	2.6	126
419	Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. Journal of Biomedical Materials Research Part B, 1999, 48, 631-639.	3.1	188
420	Co-administration of toluene and xylene antagonized the testicular toxicity but not the hematopoietic toxicity caused by ethylene glycol monoethyl ether in Sprague–Dawley rats. Toxicology Letters, 1999, 109, 11-20.	0.8	19
421	Percolational Effect of Siloxane Content in Poly(amideimide siloxane) on the Gas Permeation Behavior. Macromolecules, 1999, 32, 2394-2396.	4.8	30
422	Gas Separation through Conductive Polymer Membranes. 2. Polyaniline Membranes with High Oxygen Selectivity. Industrial & Engineering Chemistry Research, 1999, 38, 1917-1924.	3.7	44
423	Acute and Repeated Inhalation Toxicity of 1â€Bromopropane in SD Rats. Journal of Occupational Health, 1999, 41, 121-128.	2.1	14
424	Graft copolymerization of mixtures of acrylic acid and acrylamide onto polypropylene film. Journal of Applied Polymer Science, 1999, 72, 251-256.	2.6	1
425	Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). Journal of Applied Polymer Science, 1999, 73, 113.	2.6	8
426	Drug release behavior of electrical responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus. Journal of Applied Polymer Science, 1999, 74, 1752.	2.6	3
427	Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge., 1999, 48, 631.		1
428	Studies on gelatinâ€containing artificial skin: II. Preparation and characterization of crossâ€linked gelatinâ€hyaluronate sponge. Journal of Biomedical Materials Research Part B, 1999, 48, 631-639.	3.1	11
429	pHâ€dependent permeation through polysulfone ultrafiltration membranes prepared by ultraviolet polymerization technique. Journal of Applied Polymer Science, 1999, 74, 75-82.	2.6	0
430	Methoxy poly(ethylene glycol) and ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin Journal of Controlled Release, 1998, 51, 13-22.	9.9	309
431	Clonazepam release from core-shell type nanoparticles in vitro. Journal of Controlled Release, 1998, 51, 169-178.	9.9	219
432	Methoxy poly(ethylene glycol)/jµ-caprolactone amphiphilic block copolymeric micelle containing indomethacin Journal of Controlled Release, 1998, 51, 1-11.	9.9	248

#	Article	IF	CITATIONS
433	Preparation and characterization of biodegradable nanospheres composed of methoxy poly(ethylene) Tj ETQq1 1 197-208.	0.784314 9.9	rgBT /Over 105
434	Synthesis and surface characterization of heparin-immobilized polyetherurethanes. Journal of Polymer Science Part A, 1998, 36, 2331-2338.	2.3	20
435	Cloud point of poly(N-isopropylacrylamide) synthesized in the presence of cyclodextrin. Macromolecular Rapid Communications, 1998, 19, 403-407.	3.9	14
436	Permeation of solutes through interpenetrating polymer network hydrogels composed of poly(vinyl) Tj ETQq0 0 C	rgBT /Ove	rlock 10 Tf
437	Cloud point of poly(N-isopropylacrylamide) synthesized in the presence of cyclodextrin. Macromolecular Rapid Communications, 1998, 19, 403-407.	3.9	11
438	Effect of polymer complex formation on the cloud-point of poly(N-isopropylacrylamide) (PNIPAAm) in the poly(NIPAAm-co-acrylic acid): polyelectrolyte complex between poly(acrylic acid) and poly(L-lysine). Polymer, 1998, 39, 3703-3708.	3.8	49
439	Effect of Deacetylation Degree in Chitosan Composite Membranes on Pervaporation Performance. Separation Science and Technology, 1998, 33, 1255-1269.	2.5	6
440	Pervaporation Performance of \hat{l}^2 -Chitosan Membrane for Water/Alcohol Mixtures. Journal of Polymer Engineering, 1998, 18, 131-146.	1.4	7
441	Synthesis and surface characterization of heparinâ€immobilized polyetherurethanes. Journal of Polymer Science Part A, 1998, 36, 2331-2338.	2.3	O
442	<i>Inâ€situ</i> complex membrane: Dehydration of pyridine aqueous solution by pervaporation. Macromolecular Symposia, 1997, 118, 425-435.	0.7	6
443	Preparation of asymmetric porous membranes of poly(vinyl chloride). Polymer, 1997, 38, 1631-1637.	3.8	13
444	Albumin release from bioerodible hydrogels based on semi-interpenetrating polymer networks composed of poly(Îμ-caprolactone) and poly(ethylene glycol) macromer. Journal of Controlled Release, 1997, 49, 253-262.	9.9	55
445	Synthesis and properties of poly(ethylene glycol) macromer/beta-chitosan hydrogels. Journal of Materials Science: Materials in Medicine, 1997, 8, 537-541.	3.6	42
446	Clonazepam release from core-shell type nanoparticlesin vitro. Archives of Pharmacal Research, 1997, 20, 324-329.	6.3	12
447	Separation of mixed gases through porous polymeric membranes. Journal of Membrane Science, 1997, 126, 67-76.	8.2	8
448	Pervaporation of ionically surface crosslinked chitosan composite membranes for water-alcohol mixtures. Journal of Membrane Science, 1997, 133, 103-110.	8.2	101
449	Pervaporation and properties of chitosan-poly(acrylic acid) complex membranes. Journal of Membrane Science, 1997, 135, 161-171.	8.2	174
450	Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation. Polymer, 1997, 38, 1227-1232.	3.8	75

#	Article	IF	CITATIONS
451	Hydrogels of poly(ethylene glycol)-co-poly(lactones) diacrylate macromers and \hat{l}^2 -chitin. Polymer, 1997, 38, 2415-2420.	3.8	29
452	Hydration of ions in aqueous electrolyte solutions studied by differential thermal analysis at low temperatures. Journal of Electroanalytical Chemistry, 1997, 422, 133-138.	3.8	4
453	In vitro blood compatibility of functional group-grafted and heparin-immobilized polyurethanes prepared by plasma glow discharge. Biomaterials, 1997, 18, 1099-1107.	11.4	107
454	Indomethacin release behaviors from pH and thermoresponsive poly(vinyl alcohol) and poly(acrylic) Tj ETQq0 C	0 o rgBT /Ov	erlock 10 Tf 5
455	Chelate membrane from poly(vinyl alcohol)/poly(N-salicylidene allyl amine) blend. III. Effect of Mn(II) and Co(II) on oxygen/nitrogen separation. Journal of Applied Polymer Science, 1997, 66, 483-490.	2.6	1
456	Preparation, characterization and properties of ?-chitin andN-acetylated ?-chitin. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2367-2374.	2.1	77
457	Pervaporation of pyridine-water mixture through poly(acrylonitrile-co-styrene sulfonic acid) membrane. Journal of Applied Polymer Science, 1996, 59, 227-233.	2.6	20
458	Swelling of thermosensitive interpenetrating polymer networks composed of poly(vinyl alcohol) and poly(acrylic acid). Journal of Applied Polymer Science, 1996, 61, 697-702.	2.6	49
459	Plasma surface graft of acrylic acid onto a porous poly(vinylidene fluoride) membrane and its riboflavin permeation. Journal of Applied Polymer Science, 1996, 61, 1245-1250.	2.6	62
460	Synthesis and swelling characteristics of pH and thermoresponsive interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and poly(acrylic acid). Journal of Applied Polymer Science, 1996, 62, 301-311.	2.6	109
461	Preparation and surface characterization of functional group-grafted and heparin-immobilized polyurethanes by plasma glow discharge. Biomaterials, 1996, 17, 841-847.	11.4	170
462	Effects of functional group and operating temperature on the separation of pyridine-water mixture by pervaporation. Journal of Membrane Science, 1996, 113, 183-189.	8.2	18
463	Preparation and characteristics of \hat{l}^2 -chitin and poly(vinyl alcohol) blend. Polymer, 1996, 37, 5897-5905.	3.8	115
464	Plasma surface graft of acrylic acid onto a porous poly(vinylidene fluoride) membrane and its riboflavin permeation. Journal of Applied Polymer Science, 1996, 61, 1245-1250.	2.6	0
465	Chelate membrane from poly(vinyl alcohol)/poly(n-salicylidene allyl amine) blend. II. Effect of co(II) content on oxygen/nitrogen separation. Journal of Applied Polymer Science, 1995, 58, 2373-2379.	2.6	8
466	Preparation of surface-modified stimuli-responsive polymeric membranes by plasma and ultraviolet grafting methods and their riboflavin permeation. Polymer, 1995, 36, 81-85.	3.8	71
467	Semi-interpenetrating polymer networks composed of \hat{l}^2 -chitin and poly(ethylene glycol) macromer. Journal of Polymer Science Part A, 1995, 33, 2285-2287.	2.3	26
468	Dehydration of water-pyridine mixture through poly(acrylonitrile-co-acryclic acid) membrane by pervaporation. Journal of Membrane Science, 1995, 98, 183-189.	8.2	26

#	Article	IF	CITATIONS
469	Preparation of poly(amideimide siloxane) from trimellitic anhydride chloride, oxylene diamine and oligo(dimethylsiloxane) diamine. Polymer, 1995, 36, 3549-3553.	3.8	12
470	Chelate membrane from poly(vinyl alcohol)/ poly(N-salicylidene allyl amine) blend. I: Synthesis and characterization of Co(II) chelate membrane. Polymer, 1995, 36, 1507-1512.	3.8	9
471	Synthesis and properties of semi-interpenetrating polymer networks composed of \hat{l}^2 -chitin and poly(ethylene glycol) macromer. Polymer, 1995, 36, 4497-4501.	3.8	90
472	Separation of benzene/cyclohexane by pervaporation through chelate poly(vinyl alcohol)/poly(allyl) Tj ETQq0 0 C	rgBT /Ov	erlock 10 Tf 50
473	Synthesis and characterization of ether-type chitin derivatives. Macromolecular Chemistry and Physics, 1994, 195, 1687-1693.	2.2	20
474	Effect of polymeric surfactants on the cloud point of poly(N-isopropylacrylamide). Macromolecular Rapid Communications, 1994, 15, 727-732.	3.9	10
475	Dynamics of solvent diffusion in an aromatic polyimide. Journal of Applied Polymer Science, 1994, 51, 945-954.	2.6	19
476	Thermal characteristics of chitin and hydroxypropyl chitin. Polymer, 1994, 35, 3212-3216.	3.8	76
477	Bovine conglutinin (BC) mRNA expressed in liver: cloning and characterization of the BC cDNA reveals strong homology to surfactant protein-D. Gene, 1994, 141, 277-281.	2.2	19
478	Modified chitosan membranes for pervaporation. Desalination, 1993, 90, 277-290.	8.2	46
479	Preparation and permeability of solutes through acrylic acid-g-methylcellulose copolymer membranes. Journal of Applied Polymer Science, 1993, 47, 917-924.	2.6	4
480	Preparation and thermal kinetics of poly(imide-siloxanes). Journal of Applied Polymer Science, 1993, 50, 1461-1473.	2.6	24
481	Synthesis and properties of diethylaminoethyl chitosan. Polymer, 1993, 34, 1952-1957.	3.8	94
482	Dehydration of aqueous pyridine solution through crosslinked chitosan membrane. Polymer Bulletin, 1993, 31, 723-728.	3.3	3
483	Pervaporation of water-ethanol through poly(vinyl alcohol)/chitosan blend membrane. Polymer Bulletin, 1992, 29, 423-429.	3.3	50
484	Pervaporation of water/acetic acid through polyimide membranes from 3,3?, 4,4?-benzophenone tetracarboxylic dianhydride and 4,4?-oxydianiline. Polymer Bulletin, 1992, 29, 431-438.	3.3	14
485	Controlled release of riboflavin and insulin through crosslinked poly(vinyl alcohol)/chitosan blend membrane. Journal of Applied Polymer Science, 1992, 44, 1823-1828.	2.6	71
486	Properties and swelling characteristics of cross-linked poly(vinyl alcohol)/chitosan blend membrane. Journal of Applied Polymer Science, 1992, 45, 1711-1717.	2.6	178

YOUNG MOO LEE

#	Article	IF	CITATIONS
487	Synthesis and Blood-Compatibility of Poly(ethylene-g-γ-benzyl-L-glutamate). Polymer Journal, 1991, 23, 259-266.	2.7	1
488	Pervaporation separation of waterâ€"ethanol through modified chitosan membranes. IV. Phosphorylated chitosan membranes. Journal of Membrane Science, 1991, 64, 145-152.	8.2	47
489	Title is missing!. Angewandte Makromolekulare Chemie, 1991, 192, 169-181.	0.2	33
490	Pervaporation of water-ethanol mixtures through poly(acrylonitrile-co-acrylic acid) membranes. Die Makromolekulare Chemie, 1990, 191, 3131-3138.	1.1	10
491	Pervaporation Separation of Water-Ethanol through Modified Polyacrylonitrile Membranes. Polymer Journal, 1990, 22, 578-586.	2.7	21
492	Synthesis and properties of polyphosphazene interpenetrating polymer networks. Macromolecules, 1990, 23, 4885-4886.	4.8	9
493	Analyzing the Transient Thermophysical Properties of Heat-Resistant Fabrics in TPP Exposures. Textile Reseach Journal, 1987, 57, 331-338.	2.2	34
494	Thermal Protective Performance of Heat-Resistant Fabrics in Various High Intensity Heat Exposures. Textile Reseach Journal, 1987, 57, 123-132.	2.2	72
495	Effect of Moisture on the Thermal Protective Performance of Heat-Resistant Fabrics. Journal of Fire Sciences, 1986, 4, 315-331.	2.0	76