
Yufei Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/480926/publications.pdf Version: 2024-02-01

YUEEL SONG

#	Article	IF	CITATIONS
1	Protonic ceramic materials for clean and sustainable energy: advantages and challenges. International Materials Reviews, 2023, 68, 272-300.	19.3	16
2	The BaCe _{0.16} Y _{0.04} Fe _{0.8} O _{3â^'<i>δ</i>} nanocomposite: a new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. Journal of Materials Chemistry A, 2022, 10, 5381-5390.	10.3	69
3	A New Durable Surface Nanoparticlesâ€Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere. Advanced Materials, 2022, 34, e2106379.	21.0	79
4	Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping toward Improved Protonic Ceramic Fuel Cell Performance. Small, 2022, 18, e2200450.	10.0	25
5	Realizing High and Stable Electrocatalytic Oxygen Evolution for Ironâ€Based Perovskites by Coâ€Dopingâ€Induced Structural and Electronic Modulation. Advanced Functional Materials, 2022, 32, .	14.9	28
6	Effect of engineered lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3-l´ functional material for intermediate temperature solid oxide fuel cells. Ceramics International, 2022, 48, 21416-21427.	4.8	11
7	Slightly ruthenium doping enables better alloy nanoparticle exsolution of perovskite anode for high-performance direct-ammonia solid oxide fuel cells. Journal of Materials Science and Technology, 2022, 125, 51-58.	10.7	22
8	Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2009779.	14.9	195
9	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 2021, 8, .	11.3	20
10	SrCo0.8Ti0.1Ta0.1O3-l̂´ perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells. Composites Part B: Engineering, 2021, 213, 108726.	12.0	40
11	Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells. Advanced Energy Materials, 2021, 11, 2101899.	19.5	70
12	Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3-δ membrane using a thin Pd film protection strategy. Journal of Membrane Science, 2020, 596, 117709.	8.2	21
13	Fuel Cells: Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Directâ€Ammonia Solid Oxide Fuel Cells (Small 28/2020). Small, 2020, 16, 2070154.	10.0	0
14	Advances in Ceramic Thin Films Fabricated by Pulsed Laser Deposition for Intermediate-Temperature Solid Oxide Fuel Cells. Energy & Fuels, 2020, 34, 10568-10582.	5.1	37
15	Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy & Fuels, 2020, 34, 15169-15194.	5.1	152
16	Exsolved Alloy Nanoparticles Decorated Ruddlesden–Popper Perovskite as Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells. Energy & Fuels, 2020, 34, 11449-11457.	5.1	32
17	Monoclinic SrIrO ₃ : An Easily Synthesized Conductive Perovskite Oxide with Outstanding Performance for Overall Water Splitting in Alkaline Solution. Chemistry of Materials, 2020, 32, 4509-4517.	6.7	72
18	A new highly active and CO2-stable perovskite-type cathode material for solid oxide fuel cells developed from A- and B-site cation synergy. Journal of Power Sources, 2020, 457, 227995.	7.8	30

Yufei Song

#	Article	IF	CITATIONS
19	Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Directâ€Ammonia Solid Oxide Fuel Cells. Small, 2020, 16, e2001859.	10.0	53
20	Turning Detrimental Effect into Benefits: Enhanced Oxygen Reduction Reaction Activity of Cobalt-Free Perovskites at Intermediate Temperature <i>via</i> CO ₂ -Induced Surface Activation. ACS Applied Materials & Interfaces, 2020, 12, 16417-16425.	8.0	19
21	A Cobaltâ€Free Multiâ€Phase Nanocomposite as Nearâ€Ideal Cathode of Intermediateâ€Temperature Solid Oxide Fuel Cells Developed by Smart Selfâ€Assembly. Advanced Materials, 2020, 32, e1906979.	21.0	113
22	Self-Assembled Triple-Conducting Nanocomposite as a Superior Protonic Ceramic Fuel Cell Cathode. Joule, 2019, 3, 2842-2853.	24.0	292
23	Boosting the Activity of BaCo _{0.4} Fe _{0.4} Zr _{0.1} Y _{0.1} O _{3â^'} <i>_δ< Perovskite for Oxygen Reduction Reactions at Lowâ€toâ€Intermediate Temperatures through Tuning Bâ€Site Cation Deficiency. Advanced Energy Materials. 2019. 9. 1902384.</i>	/i _{}9.5}	111
24	A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells. Energy Procedia, 2019, 158, 1660-1665.	1.8	4
25	New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. Journal of Materials Chemistry A, 2019, 7, 13265-13274.	10.3	125
26	Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2018, 10, 41257-41267.	8.0	8
27	A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 405, 124-131.	7.8	31
28	Alkaline metal doped strontium cobalt ferrite perovskites as cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 13420-13429.	7.1	14
29	Rational Design of a Waterâ€Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. Advanced Science, 2017, 4, 1700337.	11.2	74
30	Functionalized Metal‣upported Reversible Protonic Ceramic Cells with Exceptional Performance and Durability. Advanced Energy and Sustainability Research, 0, , 2100171.	5.8	2