Svetlana A Santer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4809185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visualizable Cylindrical Macromolecules with Controlled Stiffness from Backbones Containing Libraries of Self-Assembling Dendritic Side Groups. Journal of the American Chemical Society, 1998, 120, 8619-8631.	13.7	312
2	Main Chain Conformation and Anomalous Elution Behavior of Cylindrical Brushes As Revealed by GPC/MALLS, Light Scattering, and SFM‡. Macromolecules, 1999, 32, 2629-2637.	4.8	254
3	pH-Responsive Molecular Nanocarriers Based on Dendritic Core-Shell Architectures. Angewandte Chemie - International Edition, 2002, 41, 4252-4256.	13.8	215
4	Peptide-Polymer Hybrid Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 3297-3301.	13.8	200
5	Single Molecule Rodâ ``Globule Phase Transition for Brush Molecules at a Flat Interface. Macromolecules, 2001, 34, 8354-8360.	4.8	196
6	Design and Structural Analysis of the First Spherical Monodendron Self-Organizable in a Cubic Lattice. Journal of the American Chemical Society, 2000, 122, 4249-4250.	13.7	135
7	Molecular Conformations of Monodendron-Jacketed Polymers by Scanning Force Microscopy. Macromolecules, 1999, 32, 2653-2660.	4.8	116
8	Measuring Molecular Weight by Atomic Force Microscopy. Journal of the American Chemical Society, 2003, 125, 6725-6728.	13.7	110
9	Motion of nano-objects on polymer brushes. Polymer, 2004, 45, 8279-8297.	3.8	97
10	Lightâ€Controlled Reversible Manipulation of Microgel Particle Size Using Azobenzeneâ€Containing Surfactant. Advanced Functional Materials, 2012, 22, 5000-5009.	14.9	97
11	Epitaxial Adsorption of Monodendron-Jacketed Linear Polymers on Highly Oriented Pyrolytic Graphite. Langmuir, 2000, 16, 6862-6867.	3.5	70
12	<i>In-situ</i> atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films. Journal of Applied Physics, 2013, 113, .	2.5	68
13	Dynamically Reconfigurable Polymer Films: Impact on Nanomotion. Advanced Materials, 2006, 18, 2359-2362.	21.0	67
14	Manipulation of small particles at solid liquid interface: light driven diffusioosmosis. Scientific Reports, 2016, 6, 36443.	3.3	67
15	Spontaneous Curvature of Comblike Polymers at a Flat Interface. Macromolecules, 2004, 37, 3918-3923.	4.8	65
16	Memory of Surface Patterns in Mixed Polymer Brushes:  Simulation and Experiment. Langmuir, 2007, 23, 279-285.	3.5	64
17	Remote control of soft nano-objects by light using azobenzene containing surfactants. Journal Physics D: Applied Physics, 2018, 51, 013002.	2.8	61
18	Polymer Brushes with Nanometerâ€Scale Gradients. Advanced Materials, 2009, 21, 4706-4710.	21.0	56

#	Article	IF	CITATIONS
19	Can polymer brushes induce motion of nano-objects?. Nanotechnology, 2003, 14, 1098-1108.	2.6	55
20	Local Composition of Nanophase-Separated Mixed Polymer Brushes. Macromolecules, 2006, 39, 3056-3064.	4.8	54
21	Thermal Cis-to-Trans Isomerization of Azobenzene-Containing Molecules Enhanced by Gold Nanoparticles: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2015, 119, 17369-17377.	3.1	52
22	A comparative study of photoinduced deformation in azobenzene containing polymer films. Soft Matter, 2016, 12, 2593-2603.	2.7	52
23	Photosensitive microgels containing azobenzene surfactants of different charges. Physical Chemistry Chemical Physics, 2017, 19, 108-117.	2.8	52
24	Graphene Multilayer as Nanosized Optical Strain Gauge for Polymer Surface Relief Gratings. Nano Letters, 2014, 14, 5754-5760.	9.1	51
25	Photosensitive surfactants: Micellization and interaction with DNA. Journal of Chemical Physics, 2014, 140, 044906.	3.0	50
26	Kinetics of photo-isomerization of azobenzene containing surfactants. Journal of Chemical Physics, 2020, 152, 024904.	3.0	50
27	Light-Induced Chain Scission in Photosensitive Polymer Brushes. Macromolecules, 2011, 44, 7372-7377.	4.8	49
28	Photomechanical Degrafting of Azo-Functionalized Poly(methacrylic acid) (PMAA) Brushes. Journal of Physical Chemistry B, 2011, 115, 10431-10438.	2.6	45
29	Structural Characterization of a Spin-Assisted Colloidâ^Polyelectrolyte Assembly: Stratified Multilayer Thin Films. Langmuir, 2010, 26, 18499-18502.	3.5	44
30	Soft Matter Beats Hard Matter: Rupturing of Thin Metallic Films Induced by Mass Transport in Photosensitive Polymer Films. ACS Applied Materials & Interfaces, 2013, 5, 7743-7747.	8.0	44
31	Opto-Mechanical Scission of Polymer Chains in Photosensitive Diblock-Copolymer Brushes. Langmuir, 2013, 29, 13967-13974.	3.5	43
32	Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns. Applied Physics Letters, 2014, 105, .	3.3	42
33	DNA compaction by azobenzene-containing surfactant. Physical Review E, 2011, 84, 021909.	2.1	39
34	Theory of Collapse and Overcharging of a Polyelectrolyte Microgel Induced by an Oppositely Charged Surfactant. Macromolecules, 2014, 47, 5388-5399.	4.8	39
35	Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes. ACS Applied Materials & Interfaces, 2016, 8, 19175-19184.	8.0	39
36	Light induced reversible structuring of photosensitive polymer films. RSC Advances, 2019, 9, 20295-20305.	3.6	36

#	Article	IF	CITATIONS
37	Interaction of photosensitive surfactant with DNA and poly acrylic acid. Journal of Chemical Physics, 2014, 140, 044907.	3.0	35
38	Making polymer brush photosensitive with azobenzene containing surfactants. Polymer, 2015, 79, 65-72.	3.8	34
39	Reversible structuring of photosensitive polymer films by surface plasmon near field radiation. Soft Matter, 2011, 7, 4174.	2.7	32
40	Structuring of photosensitive material below diffraction limit using far field irradiation. Applied Physics A: Materials Science and Processing, 2013, 113, 263-272.	2.3	32
41	Initial Salivary Pellicle Formation on Solid Substrates Studied by AFM. Journal of Nanoscience and Nanotechnology, 2004, 4, 532-538.	0.9	31
42	Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres: Calculation and Measurement of Opto-Mechanical Stresses. Journal of Physical Chemistry B, 2018, 122, 2001-2009.	2.6	28
43	Probing Opto-Mechanical Stresses within Azobenzene-Containing Photosensitive Polymer Films by a Thin Metal Film Placed Above. ACS Applied Materials & Interfaces, 2014, 6, 11333-11340.	8.0	27
44	Light-Tunable Plasmonic Nanoarchitectures Using Gold Nanoparticle–Azobenzene-Containing Cationic Surfactant Complexes. Journal of Physical Chemistry C, 2015, 119, 3762-3770.	3.1	27
45	Domain Memory of Mixed Polymer Brushes. Langmuir, 2006, 22, 4660-4667.	3.5	26
46	Polymer brushes modified by photosensitive azobenzene containing polyamines. Polymer, 2016, 98, 421-428.	3.8	25
47	Phase diagrams of DNA–photosensitive surfactant complexes: Effect of ionic strength and surfactant structure. Journal of Chemical Physics, 2014, 141, 164904.	3.0	24
48	Effect of pH, co-monomer content, and surfactant structure on the swelling behavior of microgel-azobenzene-containing surfactant complex. Polymer, 2014, 55, 6513-6518.	3.8	24
49	Surface plasmon nanolithography: impact of dynamically varying near-field boundary conditions at the air–polymer interface. Journal of Materials Chemistry, 2012, 22, 5945.	6.7	23
50	Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings: chromophore orientation in azo-doped polymer films. Soft Matter, 2014, 10, 1544.	2.7	23
51	Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective. Journal of Physical Chemistry B, 2017, 121, 8854-8867.	2.6	23
52	Communication: Light driven remote control of microgels' size in the presence of photosensitive surfactant: Complete phase diagram. Journal of Chemical Physics, 2017, 147, 031101.	3.0	22
53	Tuning the Volume Phase Transition Temperature of Microgels by Light. Advanced Functional Materials, 2022, 32, 2107946.	14.9	21
54	Light driven guided and self-organized motion of mesoporous colloidal particles. Soft Matter, 2020, 16, 1148-1155.	2.7	20

#	Article	IF	CITATIONS
55	A Dual pH―and Lightâ€Responsive Spiropyranâ€Based Surfactant: Investigations on Its Switching Behavior and Remote Control over Emulsion Stability. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
56	Smart polymer surfaces: mapping chemical landscapes on the nanometre scale. Soft Matter, 2010, 6, 3764.	2.7	18
57	Controlled Topography Change of Subdiffraction Structures Based on Photosensitive Polymer Films Induced by Surface Plasmon Polaritons. ACS Applied Materials & Interfaces, 2013, 5, 6009-6016.	8.0	18
58	Selective mass transport of azobenzeneâ€containing photosensitive films towards or away from the light intensity. Journal of the Society for Information Display, 2015, 23, 154-162.	2.1	17
59	Extremely Long-Range Light-Driven Repulsion of Porous Microparticles. Langmuir, 2020, 36, 6994-7004.	3.5	17
60	Adsorption of Photoresponsive Surfactants at Solid–Liquid Interfaces. Langmuir, 2020, 36, 14009-14018.	3.5	16
61	Near-Field Induced Reversible Structuring of Photosensitive Polymer Films: Gold Versus Silver Nano-antennas. Plasmonics, 2012, 7, 535-542.	3.4	15
62	Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties. Journal of Chemical Physics, 2017, 146, 104703.	3.0	15
63	The design of thin polymer membranes filled with magnetic particles on a microstructured silicon surface. Nanotechnology, 2009, 20, 255301.	2.6	14
64	Photocontrolled Adsorption of Polyelectrolyte Molecules on a Silicon Substrate. Langmuir, 2013, 29, 16058-16065.	3.5	14
65	Mapping a Plasmonic Hologram with Photosensitive Polymer Films: Standing versus Propagating Waves. ACS Applied Materials & Interfaces, 2014, 6, 14174-14180.	8.0	14
66	Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction. Biomacromolecules, 2016, 17, 1959-1968.	5.4	14
67	Light-driven motion of self-propelled porous Janus particles. Applied Physics Letters, 2019, 115, .	3.3	14
68	Light driven diffusioosmotic repulsion and attraction of colloidal particles. Journal of Chemical Physics, 2020, 152, 194703.	3.0	14
69	Light-induced manipulation of passive and active microparticles. European Physical Journal E, 2021, 44, 50.	1.6	13
70	Photo-Isomerization Kinetics of Azobenzene Containing Surfactant Conjugated with Polyelectrolyte. Molecules, 2021, 26, 19.	3.8	13
71	Stretching and distortion of a photosensitive polymer film by surface plasmon generated near fields in the vicinity of a nanometer sized metal pin hole. Nanotechnology, 2012, 23, 155301.	2.6	12
72	Self-Assembly of Molecular Brushes with Polyimide Backbone and Amphiphilic Block Copolymer Side Chains in Selective Solvents. Polymers, 2020, 12, 2922.	4.5	12

#	Article	IF	CITATIONS
73	Photoisomerization of an Azobenzeneâ€Containing Surfactant Within a Micelle. ChemPhotoChem, 2021, 5, 926-932.	3.0	12
74	Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer. Nanotechnology, 2012, 23, 485304.	2.6	11
75	Light-Induced Structuring of Photosensitive Polymer Brushes. ACS Applied Polymer Materials, 2019, 1, 3017-3026.	4.4	11
76	Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films. Molecules, 2016, 21, 1663.	3.8	10
77	Formation of half-period surface relief gratings in azobenzene containing polymer films. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	10
78	Quantification of ordering in active light driven colloids. Journal of Colloid and Interface Science, 2021, 586, 866-875.	9.4	10
79	Dual responsiveness of microgels induced by single light stimulus. Applied Physics Letters, 2021, 118, .	3.3	10
80	Solving an old puzzle: fine structure of diffraction spots from an azo-polymer surface relief grating. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	9
81	Adsorption Kinetics of a Photosensitive Surfactant Inside Microgels. Macromolecules, 0, , .	4.8	9
82	Confocal Raman Microscopy and AFM Study of the Interface Between the Photosensitive Polymer Layer and Multilayer Graphene. Soft Materials, 2014, 12, S98-S105.	1.7	8
83	Surface pressureâ€induced isothermal 2D―to 3Dâ€transitions in Langmuir films of poly(<i>ε</i> â€caprolactone)s and oligo(<i>ε</i> â€caprolactone) based polyesterurethanes. Polymers for Advanced Technologies, 2015, 26, 1411-1420.	3.2	8
84	DNA Interaction with Head-to-Tail Associates of Cationic Surfactants Prevents Formation of Compact Particles. Molecules, 2018, 23, 1576.	3.8	8
85	Generation of Local Diffusioosmotic Flow by Light Responsive Microgels. Langmuir, 2022, 38, 6343-6351.	3.5	8
86	Local chemical composition of nanophase-separated polymer brushes. Physical Chemistry Chemical Physics, 2011, 13, 11620.	2.8	7
87	Atomic force microscopy nanolithography: fabrication of metallic nano-slits using silicon nitride tips. Journal of Materials Science, 2013, 48, 3863-3869.	3.7	7
88	Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator. Journal of Physics Condensed Matter, 2019, 31, 125201.	1.8	7
89	Local Direction of Optomechanical Stress in Azobenzene Containing Polymers During Surface Relief Grating Formation. Macromolecular Materials and Engineering, 0, , 2100990.	3.6	7
90	Molecular weight determination of an azobenzene-derivatized poly(amic acid) by AFM. Journal of Materials Chemistry, 2005, 15, 4069.	6.7	6

#	Article	IF	CITATIONS
91	Impact of Temperature on the LB Patterning of DPPC on Mica. Langmuir, 2011, 27, 12354-12360.	3.5	6
92	Effect of a Nanodimensional Polyethylenimine Layer on Current–Voltage Characteristics of Hybrid Structures Based on Single-Crystal Silicon. Journal of Electronic Materials, 2012, 41, 3427-3435.	2.2	6
93	Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film. Applied Physics Letters, 2013, 103, 253101.	3.3	6
94	Surface tension and dilation rheology of DNA solutions in mixtures with azobenzene-containing cationic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 186-192.	4.7	6
95	Photo-assisted adsorption of gold nanoparticles onto a silicon substrate. Applied Physics Letters, 2017, 110, 133104.	3.3	6
96	Mass production of polymer nano-wires filled with metal nano-particles. Scientific Reports, 2017, 7, 8506.	3.3	6
97	Polarization controlled fine structure of diffraction spots from an optically induced grating. Applied Physics Letters, 2020, 116, .	3.3	6
98	How to Make a Surface Act as a Micropump. Advanced Materials Interfaces, 2022, 9, .	3.7	6
99	The effect of illumination on the parameters of the polymer layer deposited from solution onto a semiconductor substrate. Technical Physics Letters, 2013, 39, 656-659.	0.7	5
100	Fabrication of Flexible Hydrogel Sheets Featuring Periodically Spaced Circular Holes with Continuously Adjustable Size in Real Time. ACS Applied Materials & Interfaces, 2018, 10, 30844-30851.	8.0	5
101	Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus. Applied Physics Letters, 2022, 120, .	3.3	5
102	Some Features of Surfactant Organization in DNA Solutions at Various NaCl Concentrations. ACS Omega, 2020, 5, 18234-18243.	3.5	3
103	On the Formation of Molecular Terraces. Langmuir, 2005, 21, 8250-8254.	3.5	2
104	Cis-Isomers of Photosensitive Cationic Azobenzene Surfactants in DNA Solutions at Different NaCl Concentrations: Experiment and Modeling. Journal of Physical Chemistry B, 2021, 125, 11197-11207.	2.6	2
105	Stimuli-Responsive Materials: Light-Controlled Reversible Manipulation of Microgel Particle Size Using Azobenzene-Containing Surfactant (Adv. Funct. Mater. 23/2012). Advanced Functional Materials, 2012, 22, 5064-5064.	14.9	1
106	Tuning the Volume Phase Transition Temperature of Microgels by Light (Adv. Funct. Mater. 2/2022). Advanced Functional Materials, 2022, 32, .	14.9	1
107	Ein dualâ€responsives pH―und lichtschaltbares Tensid mit einer Spiropyranâ€Einheit: Untersuchungen zum Schaltmechanismus und Anwendung zur Steuerung von EmulsionsstabilitÃæn. Angewandte Chemie, 0, , .	2.0	1