
Francesco Antonio Aprile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4808751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Chemical Mutagenesis Approach to Insert Post-translational Modifications in Aggregation-Prone Proteins. ACS Chemical Neuroscience, 2022, 13, 1714-1718.	1.7	1
2	Systematic Activity Maturation of a Single-Domain Antibody with Non-canonical Amino Acids through Chemical Mutagenesis. Cell Chemical Biology, 2021, 28, 70-77.e5.	2.5	15
3	Rationally Designed Bicyclic Peptides Prevent the Conversion of Aβ42 Assemblies Into Fibrillar Structures. Frontiers in Neuroscience, 2021, 15, 623097.	1.4	6
4	Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 552549.	1.8	12
5	The Diagnostic Potential of Amyloidogenic Proteins. International Journal of Molecular Sciences, 2021, 22, 4128.	1.8	7
6	The binding of the small heat-shock protein αB-crystallin to fibrils of α-synuclein is driven by entropic forces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
7	Modulation of amyloid-β aggregation by metal complexes with a dual binding mode and their delivery across the blood–brain barrier using focused ultrasound. Chemical Science, 2021, 12, 9485-9493.	3.7	12
8	Man does not live by intrinsically unstructured proteins alone: The role of structured regions in aggregation. BioEssays, 2021, 43, e2100178.	1.2	3
9	The cellular modifier MOAGâ€4/SERF drives amyloid formation through charge complementation. EMBO Journal, 2021, 40, e107568.	3.5	15
10	A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer's disease. Scientific Reports, 2020, 10, 15280.	1.6	15
11	Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease. Science Advances, 2020, 6, .	4.7	95
12	Rational design of a conformation-specific antibody for the quantification of Aβ oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13509-13518.	3.3	61
13	Rationally Designed Antibodies as Research Tools to Study the Structure–Toxicity Relationship of Amyloid-l² Oligomers. International Journal of Molecular Sciences, 2020, 21, 4542.	1.8	12
14	Rational Design of Conformation-Specific Antibodies for Tau Oligomers. Biophysical Journal, 2020, 118, 370a-371a.	0.2	1
15	Enhancement of the Anti-Aggregation Activity of a Molecular Chaperone Using a Rationally Designed Post-Translational Modification. ACS Central Science, 2019, 5, 1417-1424.	5.3	18
16	Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathologica Communications, 2019, 7, 120.	2.4	64
17	Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nature Communications, 2019, 10, 1541.	5.8	140
18	C. elegans expressing D76N β2-microglobulin: a model for in vivo screening of drug candidates targeting amyloidosis. Scientific Reports, 2019, 9, 19960.	1.6	14

#	Article	IF	CITATIONS
19	Automated Behavioral Analysis of Large C. elegans Populations Using a Wide Field-of-view Tracking Platform. Journal of Visualized Experiments, 2018, , .	0.2	7
20	Third generation antibody discovery methods: <i>in silico</i> rational design. Chemical Society Reviews, 2018, 47, 9137-9157.	18.7	94
21	O2â€02â€02: TARGETING AMYLOID FORMATION USING RATIONALLY DESIGNED ANTIBODIES. Alzheimer's and Dementia, 2018, 14, P611.	0.4	0
22	Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. International Journal of Molecular Sciences, 2018, 19, 2677.	1.8	103
23	Cooperative Assembly of Hsp70 Subdomain Clusters. Biochemistry, 2018, 57, 3641-3649.	1.2	13
24	Multistep Inhibition of α-Synuclein Aggregation and Toxicity <i>in Vitro</i> and <i>in Vivo</i> by Trodusquemine. ACS Chemical Biology, 2018, 13, 2308-2319.	1.6	86
25	A Rationally Designed Hsp70 Variant Rescues the Aggregation-Associated Toxicity of Human IAPP in Cultured Pancreatic Islet I ² -Cells. International Journal of Molecular Sciences, 2018, 19, 1443.	1.8	14
26	A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1009-E1017.	3.3	231
27	Inhibition of α-Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition between α-Synuclein Species. Biochemistry, 2017, 56, 1177-1180.	1.2	47
28	Methods of probing the interactions between small molecules and disordered proteins. Cellular and Molecular Life Sciences, 2017, 74, 3225-3243.	2.4	56
29	Selective targeting of primary and secondary nucleation pathways in AÎ ² 42 aggregation using a rational antibody scanning method. Science Advances, 2017, 3, e1700488.	4.7	116
30	Identification of an RNA Polymerase III Regulator Linked to Disease-Associated Protein Aggregation. Molecular Cell, 2017, 65, 1096-1108.e6.	4.5	14
31	The polyglutamine protein ataxin-3 enables normal growth under heat shock conditions in the methylotrophic yeast Pichia pastoris. Scientific Reports, 2017, 7, 13417.	1.6	0
32	A Water-Bridged Cysteine-Cysteine Redox Regulation Mechanism in Bacterial Protein Tyrosine Phosphatases. CheM, 2017, 3, 665-677.	5.8	18
33	The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation. Scientific Reports, 2017, 7, 9039.	1.6	67
34	Sequence Specificity in the Entropy-Driven Binding of a Small Molecule and a Disordered Peptide. Journal of Molecular Biology, 2017, 429, 2772-2779.	2.0	62
35	Delivery of Native Proteins into C. elegans Using a Transduction Protocol Based on Lipid Vesicles. Scientific Reports, 2017, 7, 15045.	1.6	16
36	Structure of a low-population binding intermediate in protein-RNA recognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7171-7176.	3.3	54

#	Article	IF	CITATIONS
37	Microfluidic Diffusion Viscometer for Rapid Analysis of Complex Solutions. Analytical Chemistry, 2016, 88, 3488-3493.	3.2	29
38	Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341.	7.3	105
39	Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9902-9907.	3.3	113
40	The CamSol Method of Rational Design of Protein Mutants with Enhanced Solubility. Journal of Molecular Biology, 2015, 427, 478-490.	2.0	341
41	Structure and Dynamics of the Integrin LFA-1 I-Domain in the Inactive State Underlie its Inside-Out/Outside-In Signaling and Allosteric Mechanisms. Structure, 2015, 23, 745-753.	1.6	15
42	Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1994-2003.	3.3	384
43	Biophysical approaches for the study of interactions between molecular chaperones and protein aggregates. Chemical Communications, 2015, 51, 14425-14434.	2.2	18
44	A Rational Design Strategy for the Selective Activity Enhancement of a Molecular Chaperone toward a Target Substrate. Biochemistry, 2015, 54, 5103-5112.	1.2	25
45	Cell surface localised Hsp70 is a cancer specific regulator of clathrinâ€independent endocytosis. FEBS Letters, 2015, 589, 2747-2753.	1.3	37
46	Structure of a low-population intermediate state in the release of an enzyme product. ELife, 2015, 4, .	2.8	33
47	NMR characterization of the conformational fluctuations of the human lymphocyte functionâ€associated antigenâ€1 lâ€domain. Protein Science, 2014, 23, 1596-1606.	3.1	8
48	Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages. Journal of Molecular Biology, 2013, 425, 2397-2411.	2.0	90
49	Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain. PLoS ONE, 2013, 8, e67961.	1.1	66
50	Direct Observation of the Interconversion of Normal and Toxic Forms of α-Synuclein. Cell, 2012, 149, 1048-1059.	13.5	755
51	The Relationship between Aggregation and Toxicity of Polyglutamine-Containing Ataxin-3 in the Intracellular Environment of Escherichia coli. PLoS ONE, 2012, 7, e51890.	1.1	20