
Patrice X Petit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4807987/publications.pdf Version: 2024-02-01

DATRICE X DETIT

#	Article	IF	CITATIONS
1	Curcumin, a Multifaceted Hormetic Agent, Mediates an Intricate Crosstalk between Mitochondrial Turnover, Autophagy, and Apoptosis. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-23.	4.0	47
2	Tafazzin Mutation Affecting Cardiolipin Leads to Increased Mitochondrial Superoxide Anions and Mitophagy Inhibition in Barth Syndrome. Cells, 2020, 9, 2333.	4.1	13
3	Highlighting Curcumin-Induced Crosstalk between Autophagy and Apoptosis as Supported by Its Specific Subcellular Localization. Cells, 2020, 9, 361.	4.1	38
4	Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discovery, 2019, 5, 150.	4.7	48
5	Hormetic effects of curcumin: What is the evidence?. Journal of Cellular Physiology, 2019, 234, 10060-10071.	4.1	67
6	Liver X Receptor exerts a protective effect against the oxidative stress in the peripheral nerve. Scientific Reports, 2018, 8, 2524.	3.3	32
7	Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells. Microbial Cell, 2018, 5, 220-232.	3.2	13
8	Non-toxic fluorescent phosphonium probes to detect mitochondrial potential. Methods and Applications in Fluorescence, 2017, 5, 015007.	2.3	14
9	Optimization of pegylated iron oxide nanoplatforms for antibody coupling and bio-targeting. Journal of Materials Chemistry B, 2017, 5, 2896-2907.	5.8	14
10	Synergistic cellular effects including mitochondrial destabilization, autophagy and apoptosis following low-level exposure to a mixture of lipophilic persistent organic pollutants. Scientific Reports, 2017, 7, 4728.	3.3	16
11	Paraquat Induces Peripheral Myelin Disruption and Locomotor Defects: Crosstalk with LXR and Wnt Pathways. Antioxidants and Redox Signaling, 2017, 27, 168-183.	5.4	22
12	Antioxidative Theranostic Iron Oxide Nanoparticles toward Brain Tumors Imaging and ROS Production. ACS Chemical Biology, 2016, 11, 2812-2819.	3.4	40
13	Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Discovery, 2015, 1, 15017.	4.7	102
14	Curcumin hormesis mediates a cross-talk between autophagy and cell death. Cell Death and Disease, 2015, 6, e2003-e2003.	6.3	67
15	The iron component of particulate matter is antiapoptotic: A clue to the development of lung cancer after exposure to atmospheric pollutants?. Biochimie, 2015, 118, 195-206.	2.6	10
16	Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies. Frontiers in Genetics, 2015, 6, 359.	2.3	73
17	Barth syndrome: Cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1194-1206.	3.8	140
18	Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid. PLoS ONE, 2013, 8, e55250.	2.5	24

PATRICE X PETIT

#	Article	IF	CITATIONS
19	COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways. PLoS ONE, 2012, 7, e30847.	2.5	25
20	Mechanistic Issues of the Interaction of the Hairpin-Forming Domain of tBid with Mitochondrial Cardiolipin. PLoS ONE, 2010, 5, e9342.	2.5	35
21	Interaction of the alphaâ€helical H6 peptide from the proâ€apoptotic protein tBid with cardiolipin. FEBS Journal, 2009, 276, 6338-6354.	4.7	22
22	25â€hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. Journal of Neurochemistry, 2009, 109, 945-958.	3.9	59
23	Cross-Talk between Oxysterols and Glucocorticoids: Differential Regulation of Secreted Phopholipase A2 and Impact on Oligodendrocyte Death. PLoS ONE, 2009, 4, e8080.	2.5	18
24	Cysteine 62 of Bax Is Critical for Its Conformational Activation and Its Proapoptotic Activity in Response to H2O2-induced Apoptosis. Journal of Biological Chemistry, 2008, 283, 15359-15369.	3.4	88
25	Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. Journal of Cell Biology, 2008, 183, 681-696.	5.2	258
26	Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death and Differentiation, 2007, 14, 597-606.	11.2	135
27	A Novel C-terminal Motif Is Necessary for the Export of the Vasopressin V1b/V3 Receptor to the Plasma Membrane. Journal of Biological Chemistry, 2005, 280, 2300-2308.	3.4	67
28	Siva-1 and an Alternative Splice Form Lacking the Death Domain, Siva-2, Similarly Induce Apoptosis in T Lymphocytes via a Caspase-Dependent Mitochondrial Pathway. Journal of Immunology, 2004, 172, 4008-4017.	0.8	79
29	Lethal toxin fromClostridium sordelliiinduces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells. Cellular Microbiology, 2003, 5, 761-771.	2.1	37
30	Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Research, 2003, 63, 541-6.	0.9	147
31	Mitochondrial Implication in Cell Death. , 2002, , 215-246.		2
32	On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death and Differentiation, 2002, 9, 65-81.	11.2	197
33	Another genotoxic agent released by mitochondrial meltdown. Cell Death and Differentiation, 2001, 8, 1134-1135.	11.2	3
34	Inhibition of multicellular development switches cell death of Dictyostelium discoideum towards mammalian-like unicellular apoptosis. European Journal of Cell Biology, 2001, 80, 428-441.	3.6	31
35	On the Evolutionary Conservation of the Cell Death Pathway: Mitochondrial Release of an Apoptosis-inducing Factor during <i>Dictyostelium discoideum</i> Cell Death. Molecular Biology of the Cell, 2001, 12, 3016-3030.	2.1	151
36	Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene, 1999, 18, 2537-2546.	5.9	194

PATRICE X PETIT

#	Article	IF	CITATIONS
37	Over-expression of Bcl-2 does not protect cells from hypericin photo-induced mitochondrial membrane depolarization, but delays subsequent events in the apoptotic pathway. FEBS Letters, 1999, 462, 295-301.	2.8	39
38	Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Letters, 1998, 426, 111-116.	2.8	266
39	Caspases disrupt mitochondrial membrane barrier function. FEBS Letters, 1998, 427, 198-202.	2.8	123
40	Mitochondrial Regulation of Apoptosis. , 1998, , 147-165.		5
41	Induction of mitochondrial dysfunction and apoptosis in HeLa cells by bis-pyridinium oximes, a newly synthesized family of lipophilic biscations. Biochemical Pharmacology, 1997, 53, 1543-1552.	4.4	16
42	A Cytofluorometric Assay of Nuclear Apoptosis Induced in a Cell-Free System: Application to Ceramide-Induced Apoptosis. Experimental Cell Research, 1997, 236, 397-403.	2.6	73
43	Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. Journal of Bioenergetics and Biomembranes, 1997, 29, 185-193.	2.3	300
44	Mitochondria and programmed cell death: back to the future. FEBS Letters, 1996, 396, 7-13.	2.8	459
45	Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry. , 1996, 23, 28-38.		28
46	[41] Purification and characterization of plant mitochondria and submitochondrial particles. Methods in Enzymology, 1994, 228, 424-431.	1.0	3
47	Cytofluorometric analysis of chondrotoxicity of fluoroquinolone antimicrobial agents. Antimicrobial Agents and Chemotherapy, 1994, 38, 243-247.	3.2	74
48	Power and limits of laser scanning confocal microscopy. Biology of the Cell, 1994, 80, 229-240.	2.0	35
49	Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40 Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11752-11756.	7.1	293
50	Power and limits of laser scanning confocal microscopy. Biology of the Cell, 1994, 80, 229-240.	2.0	10
51	Mitochondrial dysfunction in yeast expressing the cytoplasmic male sterility T-urf13 gene from maize: analysis at the population and individual cell level. Molecular Genetics and Genomics, 1993, 236-236, 299-308.	2.4	21
52	The outer membrane of plant mitochondria contains a calcium-dependent protein kinase and multiple phosphoproteins. FEBS Letters, 1993, 336, 347-351.	2.8	45
53	Flow Cytometric Analysis of Rhodamine 123 Fluorescence during Modulation of the Membrane Potential in Plant Mitochondria. Plant Physiology, 1992, 98, 279-286.	4.8	56
54	Flow Cytometry of Spinach Chloroplasts. Plant Physiology, 1992, 100, 1092-1102.	4.8	16

PATRICE X PETIT

#	Article	IF	CITATIONS
55	Flow cytometry and plant protoplast cell biology. Physiologia Plantarum, 1992, 85, 374-386.	5.2	2
56	Flow cytometry and plant protoplast cell biology. Physiologia Plantarum, 1992, 85, 374-386.	5.2	44
57	Properties of submitochondrial particles from plant mitochondria: generation, surface characteristics and NAD(P)H oxidation. Plant Science, 1991, 78, 177-183.	3.6	4
58	Modulation of endogenous protein phosphorylation in plant mitochondria by respiratory substrates. Physiologia Plantarum, 1990, 80, 493-499.	5.2	14
59	Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. FEBS Journal, 1990, 194, 389-397.	0.2	225
60	Endogenous protein phosphorylation in purified plant mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1052, 195-203.	4.1	27
61	Modulation of endogenous protein phosphorylation in plant mitochondria by respiratory substrates. Physiologia Plantarum, 1990, 80, 493-499.	5.2	1
62	Some properties of mitochondria, mitoplasts and submitochondrial particles of different polarities from plant tissues. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 890, 377-386.	1.0	20
63	Mitochondria from the Mesophyll Cells of Zea mays Leaves. Journal of Plant Physiology, 1984, 116, 351-364.	3.5	10
64	PURIFIED PHYTOLECTIN FROM THE LICHEN PELTIGERACANINA VAR CANINA WHICH BINDS TO THE PHYCOBIONT CELL WALLS AND ITS USE AS CYTOCHEMICAL MARKER IN SITU. New Phytologist, 1983, 94, 103-110.	7.3	21
65	PHYTOLECTINS FROM THE NITROGEN-FIXING LICHEN PELTIGERA HORIZONTALIS: THE BINDING PATTERN OF PRIMARY PROTEIN EXTRACT. New Phytologist, 1982, 91, 705-710.	7.3	25