Anna Piperno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/480608/publications.pdf

Version: 2024-02-01

		109321	197818
121	3,511	35	49
papers	citations	h-index	g-index
133	133	133	4260
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cancer-Related Intracellular Signalling Pathways Activated by DOXorubicin/Cyclodextrin-Graphene-Based Nanomaterials. Biomolecules, 2022, 12, 63.	4.0	7
2	KLVFF oligopeptide-decorated amphiphilic cyclodextrin nanomagnets for selective amyloid beta recognition and fishing. Journal of Colloid and Interface Science, 2022, 613, 814-826.	9.4	5
3	State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles. Molecules, 2022, 27, 1134.	3.8	14
4	Carbon Nanomaterials for Therapy, Diagnosis and Biosensing. Nanomaterials, 2022, 12, 1597.	4.1	3
5	Linezolid nanoAntiobiotics and SERS-nanoTags based on polymeric cyclodextrin bimetallic core-shell nanoarchitectures. Carbohydrate Polymers, 2022, 293, 119736.	10.2	9
6	SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules, 2021, 11, 607.	4.0	97
7	Shedding Light on the Chemistry and the Properties of MÃ $\frac{1}{4}$ nchnone Functionalized Graphene. Nanomaterials, 2021, 11, 1629.	4.1	4
8	Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules, 2021, 26, 4280.	3.8	58
9	Recent Advances and Challenges in Gene Delivery Mediated by Polyester-Based Nanoparticles. International Journal of Nanomedicine, 2021, Volume 16, 5981-6002.	6.7	37
10	PEGylated bis-adamantane carboxamide as guest bridge for graphene poly-cyclodextrin gold nanoassemblies. Journal of Molecular Structure, 2021, 1240, 130519.	3.6	7
11	Pseudo-Dipeptide Bearing $\hat{l}\pm,\hat{l}\pm$ -Difluoromethyl Ketone Moiety as Electrophilic Warhead with Activity against Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 1398.	4.1	25
12	Polymer-Based Graphene Derivatives and Microwave-Assisted Silver Nanoparticles Decoration as a Potential Antibacterial Agent. Nanomaterials, 2020, 10, 2269.	4.1	20
13	Recent Advances of Graphene-Based Strategies for Arsenic Remediation. Frontiers in Chemistry, 2020, 8, 608236.	3.6	18
14	Intracellular Fate and Impact on Gene Expression of Doxorubicin/Cyclodextrin-Graphene Nanomaterials at Sub-Toxic Concentration. International Journal of Molecular Sciences, 2020, 21, 4891.	4.1	16
15	Design of naturally inspired jellyfish-shaped cyclopolylactides to manage osteosarcoma cancer stem cells fate. Materials Science and Engineering C, 2020, 117, 111291.	7.3	8
16	Cyclodextrin Cationic Polymer-Based Nanoassemblies to Manage Inflammation by Intra-Articular Delivery Strategies. Nanomaterials, 2020, 10, 1712.	4.1	6
17	Graphene-Based Strategies in Liquid Biopsy and in Viral Diseases Diagnosis. Nanomaterials, 2020, 10, 1014.	4.1	43
18	Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Marine Drugs, 2020, 18, 225.	4.6	237

#	Article	IF	Citations
19	Novel Nanohybrids Based on Supramolecular Assemblies of Meso-tetrakis-(4-sulfonatophenyl) Porphyrin J-aggregates and Amine-Functionalized Carbon Nanotubes. Nanomaterials, 2020, 10, 669.	4.1	14
20	Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Analytical and Bioanalytical Chemistry, 2020, 412, 4681-4690.	3.7	14
21	Marine Bacterial Exopolymers-Mediated Green Synthesis of Noble Metal Nanoparticles with Antimicrobial Properties. Polymers, 2019, 11, 1157.	4.5	27
22	SERS Sensing Properties of New Graphene/Gold Nanocomposite. Nanomaterials, 2019, 9, 1236.	4.1	27
23	Folate-Decorated Amphiphilic Cyclodextrins as Cell-Targeted Nanophototherapeutics. Biomacromolecules, 2019, 20, 2530-2544.	5.4	34
24	Hydroxamic Acid-Based Histone Deacetylase (HDAC) Inhibitors Bearing a Pyrazole Scaffold and a Cinnamoyl Linker. International Journal of Molecular Sciences, 2019, 20, 945.	4.1	25
25	Casting Light on Intracellular Tracking of a New Functional Graphene-Based MicroRNA Delivery System by FLIM and Raman Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46101-46111.	8.0	21
26	Synthesis and Anti-HIV Profile of a Novel Tetrahydroindazolylbenzamide Derivative Obtained by Oxazolone Chemistry. ACS Medicinal Chemistry Letters, 2019, 10, 398-401.	2.8	8
27	Exploring the entrapment of antiviral agents in hyaluronic acid-cyclodextrin conjugates. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 33-40.	1.6	14
28	Intracellular trafficking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids and Surfaces B: Biointerfaces, 2018, 163, 55-63.	5.0	44
29	Ensembleâ€based ADME–Tox profiling and virtual screening for the discovery of new inhibitors of the ⟨iゝLeishmania mexicana⟨/i⟩ cysteine protease CPB2.8ΔCTE. Chemical Biology and Drug Design, 2018, 91, 597-604.	3.2	10
30	"Click―on PLGAâ€PEG and hyaluronic acid: Gaining access to antiâ€leishmanial pentamidine bioconjugates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2778-2785.	3.4	24
31	Covalently immobilized catalase on functionalized graphene: effect on the activity, immobilization efficiency, and tetramer stability. Biomaterials Science, 2018, 6, 3231-3240.	5.4	27
32	"Clickable―polylactic acids obtained by solvent free intra-chain amidation. European Polymer Journal, 2018, 109, 341-346.	5.4	7
33	Cellular Signaling Pathways Activated by Functional Graphene Nanomaterials. International Journal of Molecular Sciences, 2018, 19, 3365.	4.1	26
34	The role of the iron catalyst in the toxicity of multi-walled carbon nanotubes (MWCNTs). Journal of Trace Elements in Medicine and Biology, 2017, 43, 153-160.	3.0	29
35	Reprofiling of fullâ€length phosphonated carbocyclic 2′â€oxaâ€3′â€ozaâ€nucleosides toward antiproliferat agents: Synthesis, antiproliferative activity, and molecular docking study. Chemical Biology and Drug Design, 2017, 90, 679-689.	ive 3.2	13
36	Silibinin-conjugated graphene nanoplatform: Synthesis, characterization and biological evaluation. FlatChem, 2017, 1, 34-41.	5.6	17

#	Article	IF	Citations
37	Nanoconstructs Based on Cyclodextrins for Antimicrobial Applications. , 2017, , 229-244.		2
38	Nanoassemblies based on non-ionic amphiphilic cyclodextrin hosting Zn(II)-phthalocyanine and docetaxel: Design, physicochemical properties and intracellular effects. Colloids and Surfaces B: Biointerfaces, 2016, 146, 590-597.	5.0	37
39	Targeting of the Leishmania mexicana cysteine protease CPB2.8î"CTE by decorated fused benzo[b]thiophene scaffold. RSC Advances, 2016, 6, 30628-30635.	3.6	23
40	A hyaluronic acid–pentamidine bioconjugate as a macrophage mediated drug targeting delivery system for the treatment of leishmaniasis. RSC Advances, 2015, 5, 95545-95550.	3.6	20
41	Synthesis of C3/C1-Substituted Tetrahydroisoquinolines. Molecules, 2015, 20, 14902-14914.	3.8	17
42	Toxicological assessment of multi-walled carbon nanotubes on A549 human lung epithelial cells. Toxicology in Vitro, 2015, 29, 352-362.	2.4	60
43	Highly untangled multiwalled carbon nanotube@polyhedral oligomeric silsesquioxane ionic hybrids: Synthesis, characterization and nonlinear optical properties. Carbon, 2015, 86, 325-337.	10.3	23
44	Engineering of carbon based nanomaterials by ring-opening reactions of a reactive azlactone graphene platform. Chemical Communications, 2015, 51, 4846-4849.	4.1	32
45	Efficient synthesis of highly substituted tetrahydroindazolone derivatives. Molecular Diversity, 2015, 19, 473-480.	3.9	6
46	Repurposing of oxazolone chemistry: gaining access to functionalized graphene nanosheets in a top-down approach from graphite. Chemical Science, 2015, 6, 6961-6970.	7.4	28
47	Direct synthesis of C3-mono-functionalized oxindoles from N-unprotected 2-oxindole and their antileishmanial activity. Bioorganic and Medicinal Chemistry, 2014, 22, 1063-1069.	3.0	33
48	\hat{l}^2 -Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs. Colloids and Surfaces B: Biointerfaces, 2014, 123, 264-270.	5.0	29
49	Recent Highlights in the Synthesis of Anti-HCV Ribonucleosides. Current Medicinal Chemistry, 2014, 21, 1843-1860.	2.4	9
50	Oxazol-5-(4H)-Ones. Part 1. Synthesis and Reactivity as 1,3-dipoles. Current Organic Chemistry, 2014, 18, 2691-2710.	1.6	26
51	Fe3O4–MWCNTPhCOOH composites for ammonia resistive sensors. Sensors and Actuators B: Chemical, 2013, 186, 333-342.	7.8	28
52	Effect of functional groups of multi-walled carbon nanotubes on the mechanical, thermal and electrical performance of epoxy resin based nanocomposites. Journal of Composite Materials, 2013, 47, 3091-3103.	2.4	19
53	Recent Advances in Carbon Nanotubes as Delivery Systems for Anticancer Drugs. Current Medicinal Chemistry, 2013, 20, 1333-1354.	2.4	50
54	Morphological Modification of MWCNT Functionalized with HNO ₃ /H ₂ SO ₄ Mixtures. Journal of Nanoscience and Nanotechnology, 2012, 12, 5054-5060.	0.9	51

#	Article	IF	CITATIONS
55	Coumarin-Conjugated Multiwalled Carbon Nanotubes for Potential Biological Applications: Development and Characterization. Journal of Nanoscience and Nanotechnology, 2012, 12, 5030-5038.	0.9	1
56	Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe ₃ O ₄ nanoparticles for tissue engineering applications. Nanotechnology, 2012, 23, 465102.	2.6	74
57	Functionalization of multi-walled carbon nanotubes with coumarin derivatives and their biological evaluation. Organic and Biomolecular Chemistry, 2012, 10, 1025-1031.	2.8	38
58	A facile and ecofriendly functionalization of multiwalled carbon nanotubes by an old mesoionic compound. Chemical Communications, 2012, 48, 6836.	4.1	52
59	Hydrozirconation of four-, five-, six- and seven-membered N-alkoxycarbonyl lactams to lactamols. Tetrahedron Letters, 2011, 52, 6880-6882.	1.4	13
60	Antiviral activity of seed extract from Citrus bergamia towards human retroviruses. Bioorganic and Medicinal Chemistry, 2011, 19, 2084-2089.	3.0	60
61	Isoxazolidinyl polycyclic aromatic hydrocarbons as DNA-intercalating antitumor agents. European Journal of Medicinal Chemistry, 2011, 46, 129-136.	5.5	48
62	Evaluation of tea tree oil quality and ascaridole: A deep study by means of chiral and multi heart-cuts multidimensional gas chromatography system coupled to mass spectrometry detection. Journal of Chromatography A, 2010, 1217, 6422-6427.	3.7	42
63	Competitive Formation of βâ€Enaminones and 3â€Aminoâ€2(5 <i>H</i>)â€furanones from the Isoxazolidine System: A Combined Synthetic and Quantum Chemical Study. European Journal of Organic Chemistry, 2010, 2010, 5897-5905.	2.4	15
	2010, 2010, 3037 3303.		
64	Antimycoplasmal Activity of Oleuropein. , 2010, , 1355-1361.		0
64		3.2	0 54
	Antimycoplasmal Activity of Oleuropein. , 2010, , 1355-1361. Synthesis of C-4′Truncated Phosphonated Carbocyclic 2′-Oxa-3′-azanucleosides as Antiviral Agents.	3.2 5.2	
65	Antimycoplasmal Activity of Oleuropein., 2010, , 1355-1361. Synthesis of C-4′Truncated Phosphonated Carbocyclic 2′-Oxa-3′-azanucleosides as Antiviral Agents. Journal of Organic Chemistry, 2010, 75, 2798-2805. β-Cyclodextrin and Caffeine Complexes with Natural Polyphenols from Olive and Olive Oils: NMR, Thermodynamic, and Molecular Modeling Studies. Journal of Agricultural and Food Chemistry, 2010,		54
65	Antimycoplasmal Activity of Oleuropein., 2010, , 1355-1361. Synthesis of C-4′Truncated Phosphonated Carbocyclic 2′-Oxa-3′-azanucleosides as Antiviral Agents. Journal of Organic Chemistry, 2010, 75, 2798-2805. β-Cyclodextrin and Caffeine Complexes with Natural Polyphenols from Olive and Olive Oils: NMR, Thermodynamic, and Molecular Modeling Studies. Journal of Agricultural and Food Chemistry, 2010, 58, 11876-11882. Preparation of isoxazolidinyl nucleoside enantiomers by lipase-catalysed kinetic resolution.	5.2	54 24
65 66 67	Antimycoplasmal Activity of Oleuropein. , 2010, , 1355-1361. Synthesis of C-4′Truncated Phosphonated Carbocyclic 2′-Oxa-3′-azanucleosides as Antiviral Agents. Journal of Organic Chemistry, 2010, 75, 2798-2805. β-Cyclodextrin and Caffeine Complexes with Natural Polyphenols from Olive and Olive Oils: NMR, Thermodynamic, and Molecular Modeling Studies. Journal of Agricultural and Food Chemistry, 2010, 58, 11876-11882. Preparation of isoxazolidinyl nucleoside enantiomers by lipase-catalysed kinetic resolution. Tetrahedron: Asymmetry, 2009, 20, 425-429. Determination of Oxygen Heterocyclic Components in Citrus Products by HPLC with UV Detection.	5.2	54 24 13
65 66 67	Antimycoplasmal Activity of Oleuropein., 2010, , 1355-1361. Synthesis of C-4′Truncated Phosphonated Carbocyclic 2′-Oxa-3′-azanucleosides as Antiviral Agents. Journal of Organic Chemistry, 2010, 75, 2798-2805. β-Cyclodextrin and Caffeine Complexes with Natural Polyphenols from Olive and Olive Oils: NMR, Thermodynamic, and Molecular Modeling Studies. Journal of Agricultural and Food Chemistry, 2010, 58, 11876-11882. Preparation of isoxazolidinyl nucleoside enantiomers by lipase-catalysed kinetic resolution. Tetrahedron: Asymmetry, 2009, 20, 425-429. Determination of Oxygen Heterocyclic Components in Citrus Products by HPLC with UV Detection. Journal of Agricultural and Food Chemistry, 2009, 57, 6543-6551. Stereoselective Synthesis and Biological Evaluations of Novel 3′-Deoxy-4′-azaribonucleosides as	5.2 1.8 5.2	54 24 13 57
65 66 67 68	Antimycoplasmal Activity of Oleuropein. , 2010, , 1355-1361. Synthesis of C-4′Truncated Phosphonated Carbocyclic 2′-Oxa-3′-azanucleosides as Antiviral Agents. Journal of Organic Chemistry, 2010, 75, 2798-2805. β-Cyclodextrin and Caffeine Complexes with Natural Polyphenols from Olive and Olive Oils: NMR, Thermodynamic, and Molecular Modeling Studies. Journal of Agricultural and Food Chemistry, 2010, 58, 11876-11882. Preparation of isoxazolidinyl nucleoside enantiomers by lipase-catalysed kinetic resolution. Tetrahedron: Asymmetry, 2009, 20, 425-429. Determination of Oxygen Heterocyclic Components in Citrus Products by HPLC with UV Detection. Journal of Agricultural and Food Chemistry, 2009, 57, 6543-6551. Stereoselective Synthesis and Biological Evaluations of Novel 3′-Deoxy-4′-azaribonucleosides as Inhibitors of Hepatitis C Virus RNA Replication. Journal of Medicinal Chemistry, 2009, 52, 4054-4057.	5.2 1.8 5.2	5424135738

#	Article	IF	CITATIONS
73	Effect of Phosphonated Carbocyclic 2′-Oxa-3′-Aza-Nucleoside on Human T-Cell Leukemia Virus Type 1 Infection In Vitro. Antimicrobial Agents and Chemotherapy, 2008, 52, 54-64.	3.2	33
74	Phosphonated Carbocyclic 2â€~-Oxa-3â€~-azanucleosides as New Antiretroviral Agents. Journal of Medicinal Chemistry, 2007, 50, 3747-3750.	6.4	49
75	First Example of Direct RuO4-Catalyzed Oxidation of Isoxazolidines to 3-Isoxazolidones. Journal of Organic Chemistry, 2007, 72, 3958-3960.	3.2	18
76	A Novel Class of Modified Nucleosides: Synthesis of Alkylidene Isoxazolidinyl Nucleosides Containing Thymine. European Journal of Organic Chemistry, 2007, 2007, 1517-1521.	2.4	23
77	Synthesis of Methyleneisoxazolidine Nucleoside Analogues by Microwaveâ€Assisted Nitrone Cycloaddition. European Journal of Organic Chemistry, 2007, 2007, 4758-4764.	2.4	20
78	Corrigendum to "Enantioselective synthesis of homocarbocyclic-2′-oxa-3′-azanucleosides― Tetrahedron, 2007, 63, 4190.	1.9	2
79	Binding of a non-ionic pyrenylisoxazolidine derivative to double-stranded polynucleotides: spectroscopic and molecular modelling studies. New Journal of Chemistry, 2006, 30, 554.	2.8	20
80	Synthesis and Biological Activity of Isoxazolidinyl Polycyclic Aromatic Hydrocarbons:Â Potential DNA Intercalators. Journal of Medicinal Chemistry, 2006, 49, 709-715.	6.4	74
81	Synthesis and biological evaluation of phosphonated carbocyclic 2′-oxa-3′-aza-nucleosides. Bioorganic and Medicinal Chemistry, 2006, 14, 955-959.	3.0	31
82	Synthesis and biological evaluation of phosphonated dihydroisoxazole nucleosides. Bioorganic and Medicinal Chemistry, 2006, 14, 3818-3824.	3.0	21
83	Phenolic components of Olea europea: Isolation of new tyrosol and hydroxytyrosol derivatives. Food Chemistry, 2006, 95, 562-565.	8.2	26
84	Enantioselective synthesis of homocarbocyclic-2′-oxo-3′-azanucleosides. Tetrahedron, 2006, 62, 1171-1181.	. 1.9	28
85	Synthesis and Biological Activity of Phosphonated Nucleosides: Part 1Furanose, Carbocyclic and Heterocyclic Analogues. Current Medicinal Chemistry, 2006, 13, 3675-3695.	2.4	64
86	From Amino Acids to Enantiopure Bicyclic Isoxazolidinylpyridin-4(1H)-ones through Intramolecular Nitrone Cycloadditions. European Journal of Organic Chemistry, 2005, 2005, 2368-2373.	2.4	7
87	An efficient approach to enantiomeric isoxazolidinyl analogues of tiazofurin based on nitrone cycloadditions. Tetrahedron: Asymmetry, 2005, 16, 3865-3876.	1.8	44
88	C-Alkoxycarbonyl Nitrones: Building Blocks for the Synthesis of Butenolides, Lactams and Modified Nucleosides. Mini-Reviews in Organic Chemistry, 2005, 2, 59-77.	1.3	40
89	Reactions of Benzonitrile Oxide with Methoxypyrimidines and Pyrimidones. Heterocycles, 2005, 65, 1079.	0.7	1
90	Synthesis of Phosphonated Carbocyclic 2â€~-Oxa-3â€~-aza-nucleosides: Novel Inhibitors of Reverse Transcriptase. Journal of Medicinal Chemistry, 2005, 48, 1389-1394.	6.4	72

#	Article	IF	Citations
91	Antimycoplasmal Activity of Hydroxytyrosol. Antimicrobial Agents and Chemotherapy, 2004, 48, 4892-4894.	3.2	47
92	Synthesis of pyrimidine-containing 3-aminobutenolides. Tetrahedron, 2004, 60, 6593-6596.	1.9	4
93	The Cannizzaro-like metabolites of secoiridoid glucosides in some olive cultivars. Journal of the Science of Food and Agriculture, 2004, 84, 341-349.	3.5	13
94	$4\hat{a}$ €²-α-C-Branched N,O-nucleosides: synthesis and biological properties. Bioorganic and Medicinal Chemistry, 2004, 12, 3903-3909.	3.0	10
95	From cyclopentadiene to isoxazoline–carbocyclic nucleosides: a rapid access to biological molecules through nitrosocarbonyl chemistry. Tetrahedron, 2004, 60, 3643-3651.	1.9	37
96	A DFT rationalization for the observed regiochemistry in the nitrile oxide cycloaddition with anthracene and acridine. Tetrahedron, 2004, 60, 6443-6451.	1.9	27
97	Syntheses of New Chiral Bicyclic Sultams and Their Use as Auxiliaries in Asymmetric Conjugate Addition of Grignard Reagents ChemInform, 2003, 34, no.	0.0	0
98	Enantioselective Syntheses and Cytotoxicity of N,O-Nucleosides. Journal of Medicinal Chemistry, 2003, 46, 3696-3702.	6.4	70
99	Isoxazolidine analogues of pseudouridine: a new class of modified nucleosides. Tetrahedron, 2003, 59, 4733-4738.	1.9	42
100	Diastereo- and enantioselective synthesis of N,O-nucleosides. Tetrahedron: Asymmetry, 2003, 14, 2717-2723.	1.8	33
101	Enantioselective synthesis of N,O-psiconucleosides. Tetrahedron: Asymmetry, 2003, 14, 2419-2425.	1.8	28
102	Diastereo- and Enantioselective Synthesis of 1′-C-BranchedN,O-Nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 739-742.	1.1	10
103	Enantioselective synthesis of isoxazolidinyl nucleosides containing uracil, 5-fluorouracil, thymine and cytosine as new potential anti-HIV drugs. Arkivoc, 2003, 2002, 159-167.	0.5	8
104	Diastereoselective Synthesis of N,O-Psiconucleosides, a New Class of Modified Nucleosides. European Journal of Organic Chemistry, 2002, 2002, 1206-1212.	2.4	26
105	Enantioselective synthesis of 4-hydroxy-d-pyroglutamic acid derivatives by an asymmetric 1,3-dipolar cycloaddition. Tetrahedron: Asymmetry, 2002, 13, 167-172.	1.8	35
106	Syntheses of new chiral bicyclic sultams and their use as auxiliaries in asymmetric conjugate addition of Grignard reagents. Tetrahedron: Asymmetry, 2002, 13, 1915-1921.	1.8	14
107	Modified nucleosides. A general and diastereoselective approach to N,O-psiconucleosides. Tetrahedron, 2002, 58, 581-587.	1.9	36
108	Intramolecular Cycloadditions of α-Allyloxycarbonylnitrones: Stereoselective Synthesis of 3-Amino-2(5H)furanones. Journal of Organic Chemistry, 2002, 67, 4380-4383.	3.2	20

#	Article	IF	CITATIONS
109	Stereoselective synthesis of homochiral annulated sultams via intramolecular cycloaddition reactions. Tetrahedron, 2001, 57, 3425-3433.	1.9	43
110	Diastereoselective synthesis of N,O-psiconucleosides via 1,3-dipolar cycloadditions. Tetrahedron Letters, 2001, 42, 1777-1780.	1.4	38
111	A Stereoselective Approach to Isoxazolidinyl Nucleosides. European Journal of Organic Chemistry, 2001, 2001, 1893-1898.	2.4	30
112	Oleuropein Site Selective Hydrolysis by Technomimetic Nuclear Magnetic Resonance Experiments. Journal of Agricultural and Food Chemistry, 2000, 48, 1623-1629.	5.2	30
113	Bioactive Derivatives of Oleuropein from Olive Fruits. Journal of Agricultural and Food Chemistry, 1999, 47, 3531-3534.	5.2	59
114	NMR Experiments of Oleuropein Biomimetic Hydrolysis. Journal of Agricultural and Food Chemistry, 1999, 47, 3665-3668.	5.2	52
115	Homochiral α-d- and β-d-Isoxazolidinylthymidines via 1,3-Dipolar Cycloadditionâ€. Journal of Organic Chemistry, 1999, 64, 9321-9327.	3.2	58
116	Stereoselective Synthesis of Enantiomerically Pure Isoxa-zolidine-fused d-Lactams. Heterocycles, 1999, 51, 37.	0.7	5
117	A general synthetic approach to 5-alkyl-2(5H)furanonesvia 1,3-dipolar cycloaddition. Tetrahedron, 1998, 54, 5695-5708.	1.9	18
118	Biophenolâ^'Protein Supramolecular Models by Fast Atom Bombardment-Mass Spectrometric Experiments. Journal of Agricultural and Food Chemistry, 1997, 45, 2447-2451.	5.2	13
119	Stereoselective synthesis of isoxazole and pyrazole annulated sultams via intramolecular 1,3-dipolar cycloaddition reactions. Tetrahedron, 1997, 53, 13855-13866.	1.9	20
120	Modified dideoxynucleosides: Synthesis of 2′-N-alkyl-3′-hydroxyalkyl-1′,2′-isoxazolidinyl thymidine and 5-fluorouridine derivatives. Tetrahedron, 1996, 52, 8889-8898.	1.9	39
121	Intramolecular nitrone cycloaddition: Stereoselective synthesis of piperidine systems. Tetrahedron, 1996, 52, 14311-14322.	1.9	7