List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/480608/publications.pdf Version: 2024-02-01

		109321	197818
121	3,511	35	49
papers	citations	h-index	g-index
133	133	133	4260
all docs	docs citations	times ranked	citing authors

ANNA DIDEDNO

#	Article	IF	CITATIONS
1	Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Marine Drugs, 2020, 18, 225.	4.6	237
2	SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules, 2021, 11, 607.	4.0	97
3	Synthesis and Biological Activity of Isoxazolidinyl Polycyclic Aromatic Hydrocarbons:Â Potential DNA Intercalators. Journal of Medicinal Chemistry, 2006, 49, 709-715.	6.4	74
4	Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe ₃ O ₄ nanoparticles for tissue engineering applications. Nanotechnology, 2012, 23, 465102.	2.6	74
5	Synthesis of Phosphonated Carbocyclic 2â€~-Oxa-3â€~-aza-nucleosides: Novel Inhibitors of Reverse Transcriptase. Journal of Medicinal Chemistry, 2005, 48, 1389-1394.	6.4	72
6	Enantioselective Syntheses and Cytotoxicity ofN,O-Nucleosides. Journal of Medicinal Chemistry, 2003, 46, 3696-3702.	6.4	70
7	Synthesis and Biological Activity of Phosphonated Nucleosides: Part 1Furanose, Carbocyclic and Heterocyclic Analogues. Current Medicinal Chemistry, 2006, 13, 3675-3695.	2.4	64
8	Antiviral activity of seed extract from Citrus bergamia towards human retroviruses. Bioorganic and Medicinal Chemistry, 2011, 19, 2084-2089.	3.0	60
9	Toxicological assessment of multi-walled carbon nanotubes on A549 human lung epithelial cells. Toxicology in Vitro, 2015, 29, 352-362.	2.4	60
10	Bioactive Derivatives of Oleuropein from Olive Fruits. Journal of Agricultural and Food Chemistry, 1999, 47, 3531-3534.	5.2	59
11	Homochiral α-d- and β-d-Isoxazolidinylthymidines via 1,3-Dipolar Cycloadditionâ€. Journal of Organic Chemistry, 1999, 64, 9321-9327.	3.2	58
12	Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules, 2021, 26, 4280.	3.8	58
13	Determination of Oxygen Heterocyclic Components in Citrus Products by HPLC with UV Detection. Journal of Agricultural and Food Chemistry, 2009, 57, 6543-6551.	5.2	57
14	Synthesis of C-4′Truncated Phosphonated Carbocyclic 2′-Oxa-3′-azanucleosides as Antiviral Agents. Journal of Organic Chemistry, 2010, 75, 2798-2805.	3.2	54
15	NMR Experiments of Oleuropein Biomimetic Hydrolysis. Journal of Agricultural and Food Chemistry, 1999, 47, 3665-3668.	5.2	52
16	A facile and ecofriendly functionalization of multiwalled carbon nanotubes by an old mesoionic compound. Chemical Communications, 2012, 48, 6836.	4.1	52
17	Morphological Modification of MWCNT Functionalized with HNO ₃ /H ₂ SO ₄ Mixtures. Journal of Nanoscience and Nanotechnology, 2012, 12, 5054-5060.	0.9	51
18	Recent Advances in Carbon Nanotubes as Delivery Systems for Anticancer Drugs. Current Medicinal Chemistry, 2013, 20, 1333-1354.	2.4	50

ANNA PIPERNO

#	Article	IF	CITATIONS
19	Phosphonated Carbocyclic 2â€~-Oxa-3â€~-azanucleosides as New Antiretroviral Agents. Journal of Medicinal Chemistry, 2007, 50, 3747-3750.	6.4	49
20	Isoxazolidinyl polycyclic aromatic hydrocarbons as DNA-intercalating antitumor agents. European Journal of Medicinal Chemistry, 2011, 46, 129-136.	5.5	48
21	Antimycoplasmal Activity of Hydroxytyrosol. Antimicrobial Agents and Chemotherapy, 2004, 48, 4892-4894.	3.2	47
22	An efficient approach to enantiomeric isoxazolidinyl analogues of tiazofurin based on nitrone cycloadditions. Tetrahedron: Asymmetry, 2005, 16, 3865-3876.	1.8	44
23	Intracellular trafficking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids and Surfaces B: Biointerfaces, 2018, 163, 55-63.	5.0	44
24	Stereoselective synthesis of homochiral annulated sultams via intramolecular cycloaddition reactions. Tetrahedron, 2001, 57, 3425-3433.	1.9	43
25	Graphene-Based Strategies in Liquid Biopsy and in Viral Diseases Diagnosis. Nanomaterials, 2020, 10, 1014.	4.1	43
26	Isoxazolidine analogues of pseudouridine: a new class of modified nucleosides. Tetrahedron, 2003, 59, 4733-4738.	1.9	42
27	Evaluation of tea tree oil quality and ascaridole: A deep study by means of chiral and multi heart-cuts multidimensional gas chromatography system coupled to mass spectrometry detection. Journal of Chromatography A, 2010, 1217, 6422-6427.	3.7	42
28	C-Alkoxycarbonyl Nitrones: Building Blocks for the Synthesis of Butenolides, Lactams and Modified Nucleosides. Mini-Reviews in Organic Chemistry, 2005, 2, 59-77.	1.3	40
29	Modified dideoxynucleosides: Synthesis of 2′-N-alkyl-3′-hydroxyalkyl-1′,2′-isoxazolidinyl thymidine and 5-fluorouridine derivatives. Tetrahedron, 1996, 52, 8889-8898.	1.9	39
30	Diastereoselective synthesis of N,O-psiconucleosides via 1,3-dipolar cycloadditions. Tetrahedron Letters, 2001, 42, 1777-1780.	1.4	38
31	Stereoselective Synthesis and Biological Evaluations of Novel 3′-Deoxy-4′-azaribonucleosides as Inhibitors of Hepatitis C Virus RNA Replication. Journal of Medicinal Chemistry, 2009, 52, 4054-4057.	6.4	38
32	Functionalization of multi-walled carbon nanotubes with coumarin derivatives and their biological evaluation. Organic and Biomolecular Chemistry, 2012, 10, 1025-1031.	2.8	38
33	From cyclopentadiene to isoxazoline–carbocyclic nucleosides: a rapid access to biological molecules through nitrosocarbonyl chemistry. Tetrahedron, 2004, 60, 3643-3651.	1.9	37
34	Nanoassemblies based on non-ionic amphiphilic cyclodextrin hosting Zn(II)-phthalocyanine and docetaxel: Design, physicochemical properties and intracellular effects. Colloids and Surfaces B: Biointerfaces, 2016, 146, 590-597.	5.0	37
35	Recent Advances and Challenges in Gene Delivery Mediated by Polyester-Based Nanoparticles. International Journal of Nanomedicine, 2021, Volume 16, 5981-6002.	6.7	37
36	Modified nucleosides. A general and diastereoselective approach to N,O-psiconucleosides. Tetrahedron, 2002, 58, 581-587.	1.9	36

#	Article	IF	CITATIONS
37	Enantioselective synthesis of 4-hydroxy-d-pyroglutamic acid derivatives by an asymmetric 1,3-dipolar cycloaddition. Tetrahedron: Asymmetry, 2002, 13, 167-172.	1.8	35
38	Folate-Decorated Amphiphilic Cyclodextrins as Cell-Targeted Nanophototherapeutics. Biomacromolecules, 2019, 20, 2530-2544.	5.4	34
39	Diastereo- and enantioselective synthesis of N,O-nucleosides. Tetrahedron: Asymmetry, 2003, 14, 2717-2723.	1.8	33
40	Effect of Phosphonated Carbocyclic 2â€2-Oxa-3â€2-Aza-Nucleoside on Human T-Cell Leukemia Virus Type 1 Infection In Vitro. Antimicrobial Agents and Chemotherapy, 2008, 52, 54-64.	3.2	33
41	Direct synthesis of C3-mono-functionalized oxindoles from N-unprotected 2-oxindole and their antileishmanial activity. Bioorganic and Medicinal Chemistry, 2014, 22, 1063-1069.	3.0	33
42	Engineering of carbon based nanomaterials by ring-opening reactions of a reactive azlactone graphene platform. Chemical Communications, 2015, 51, 4846-4849.	4.1	32
43	Synthesis and biological evaluation of phosphonated carbocyclic 2′-oxa-3′-aza-nucleosides. Bioorganic and Medicinal Chemistry, 2006, 14, 955-959.	3.0	31
44	Oleuropein Site Selective Hydrolysis by Technomimetic Nuclear Magnetic Resonance Experiments. Journal of Agricultural and Food Chemistry, 2000, 48, 1623-1629.	5.2	30
45	A Stereoselective Approach to Isoxazolidinyl Nucleosides. European Journal of Organic Chemistry, 2001, 2001, 1893-1898.	2.4	30
46	β-Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs. Colloids and Surfaces B: Biointerfaces, 2014, 123, 264-270.	5.0	29
47	The role of the iron catalyst in the toxicity of multi-walled carbon nanotubes (MWCNTs). Journal of Trace Elements in Medicine and Biology, 2017, 43, 153-160.	3.0	29
48	Enantioselective synthesis of N,O-psiconucleosides. Tetrahedron: Asymmetry, 2003, 14, 2419-2425.	1.8	28
49	Enantioselective synthesis of homocarbocyclic-2′-oxo-3′-azanucleosides. Tetrahedron, 2006, 62, 1171-1181.	. 1.9	28
50	Fe3O4–MWCNTPhCOOH composites for ammonia resistive sensors. Sensors and Actuators B: Chemical, 2013, 186, 333-342.	7.8	28
51	Repurposing of oxazolone chemistry: gaining access to functionalized graphene nanosheets in a top-down approach from graphite. Chemical Science, 2015, 6, 6961-6970.	7.4	28
52	A DFT rationalization for the observed regiochemistry in the nitrile oxide cycloaddition with anthracene and acridine. Tetrahedron, 2004, 60, 6443-6451.	1.9	27
53	Covalently immobilized catalase on functionalized graphene: effect on the activity, immobilization efficiency, and tetramer stability. Biomaterials Science, 2018, 6, 3231-3240.	5.4	27
54	Marine Bacterial Exopolymers-Mediated Green Synthesis of Noble Metal Nanoparticles with Antimicrobial Properties. Polymers, 2019, 11, 1157.	4.5	27

#	Article	IF	CITATIONS
55	SERS Sensing Properties of New Graphene/Gold Nanocomposite. Nanomaterials, 2019, 9, 1236.	4.1	27
56	Diastereoselective Synthesis ofN,O-Psiconucleosides, a New Class of Modified Nucleosides. European Journal of Organic Chemistry, 2002, 2002, 1206-1212.	2.4	26
57	Phenolic components of Olea europea: Isolation of new tyrosol and hydroxytyrosol derivatives. Food Chemistry, 2006, 95, 562-565.	8.2	26
58	Cellular Signaling Pathways Activated by Functional Graphene Nanomaterials. International Journal of Molecular Sciences, 2018, 19, 3365.	4.1	26
59	Oxazol-5-(4H)-Ones. Part 1. Synthesis and Reactivity as 1,3-dipoles. Current Organic Chemistry, 2014, 18, 2691-2710.	1.6	26
60	Hydroxamic Acid-Based Histone Deacetylase (HDAC) Inhibitors Bearing a Pyrazole Scaffold and a Cinnamoyl Linker. International Journal of Molecular Sciences, 2019, 20, 945.	4.1	25
61	Pseudo-Dipeptide Bearing α,α-Difluoromethyl Ketone Moiety as Electrophilic Warhead with Activity against Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 1398.	4.1	25
62	β-Cyclodextrin and Caffeine Complexes with Natural Polyphenols from Olive and Olive Oils: NMR, Thermodynamic, and Molecular Modeling Studies. Journal of Agricultural and Food Chemistry, 2010, 58, 11876-11882.	5.2	24
63	"Click―on PLGAâ€PEG and hyaluronic acid: Gaining access to antiâ€leishmanial pentamidine bioconjugates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2778-2785.	3.4	24
64	A Novel Class of Modified Nucleosides: Synthesis of Alkylidene Isoxazolidinyl Nucleosides Containing Thymine. European Journal of Organic Chemistry, 2007, 2007, 1517-1521.	2.4	23
65	Highly untangled multiwalled carbon nanotube@polyhedral oligomeric silsesquioxane ionic hybrids: Synthesis, characterization and nonlinear optical properties. Carbon, 2015, 86, 325-337.	10.3	23
66	Targeting of the Leishmania mexicana cysteine protease CPB2.8ΔCTE by decorated fused benzo[b]thiophene scaffold. RSC Advances, 2016, 6, 30628-30635.	3.6	23
67	Synthesis and biological evaluation of phosphonated dihydroisoxazole nucleosides. Bioorganic and Medicinal Chemistry, 2006, 14, 3818-3824.	3.0	21
68	Casting Light on Intracellular Tracking of a New Functional Graphene-Based MicroRNA Delivery System by FLIM and Raman Imaging. ACS Applied Materials & Interfaces, 2019, 11, 46101-46111.	8.0	21
69	Stereoselective synthesis of isoxazole and pyrazole annulated sultams via intramolecular 1,3-dipolar cycloaddition reactions. Tetrahedron, 1997, 53, 13855-13866.	1.9	20
70	Intramolecular Cycloadditions of α-Allyloxycarbonylnitrones: Stereoselective Synthesis of 3-Amino-2(5H)furanones. Journal of Organic Chemistry, 2002, 67, 4380-4383.	3.2	20
71	Binding of a non-ionic pyrenylisoxazolidine derivative to double-stranded polynucleotides: spectroscopic and molecular modelling studies. New Journal of Chemistry, 2006, 30, 554.	2.8	20
72	Synthesis of Methyleneisoxazolidine Nucleoside Analogues by Microwaveâ€Assisted Nitrone Cycloaddition. European Journal of Organic Chemistry, 2007, 2007, 4758-4764.	2.4	20

#	Article	IF	CITATIONS
73	A hyaluronic acid–pentamidine bioconjugate as a macrophage mediated drug targeting delivery system for the treatment of leishmaniasis. RSC Advances, 2015, 5, 95545-95550.	3.6	20
74	Polymer-Based Graphene Derivatives and Microwave-Assisted Silver Nanoparticles Decoration as a Potential Antibacterial Agent. Nanomaterials, 2020, 10, 2269.	4.1	20
75	Effect of functional groups of multi-walled carbon nanotubes on the mechanical, thermal and electrical performance of epoxy resin based nanocomposites. Journal of Composite Materials, 2013, 47, 3091-3103.	2.4	19
76	A general synthetic approach to 5-alkyl-2(5H)furanonesvia 1,3-dipolar cycloaddition. Tetrahedron, 1998, 54, 5695-5708.	1.9	18
77	First Example of Direct RuO4-Catalyzed Oxidation of Isoxazolidines to 3-Isoxazolidones. Journal of Organic Chemistry, 2007, 72, 3958-3960.	3.2	18
78	Diastereoselective synthesis of a collection of new homonucleoside mimetics containing pyrrolo[1,2-b]isoxazoline and pyrrolidine rings. Tetrahedron: Asymmetry, 2008, 19, 1204-1209.	1.8	18
79	Recent Advances of Graphene-Based Strategies for Arsenic Remediation. Frontiers in Chemistry, 2020, 8, 608236.	3.6	18
80	Synthesis of C3/C1-Substituted Tetrahydroisoquinolines. Molecules, 2015, 20, 14902-14914.	3.8	17
81	Silibinin-conjugated graphene nanoplatform: Synthesis, characterization and biological evaluation. FlatChem, 2017, 1, 34-41.	5.6	17
82	Intracellular Fate and Impact on Gene Expression of Doxorubicin/Cyclodextrin-Graphene Nanomaterials at Sub-Toxic Concentration. International Journal of Molecular Sciences, 2020, 21, 4891.	4.1	16
83	Competitive Formation of βâ€Enaminones and 3â€Aminoâ€2(5 <i>H</i>)â€furanones from the Isoxazolidine System: A Combined Synthetic and Quantum Chemical Study. European Journal of Organic Chemistry, 2010, 2010, 5897-5905.	2.4	15
84	Syntheses of new chiral bicyclic sultams and their use as auxiliaries in asymmetric conjugate addition of Grignard reagents. Tetrahedron: Asymmetry, 2002, 13, 1915-1921.	1.8	14
85	Exploring the entrapment of antiviral agents in hyaluronic acid-cyclodextrin conjugates. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 33-40.	1.6	14
86	Novel Nanohybrids Based on Supramolecular Assemblies of Meso-tetrakis-(4-sulfonatophenyl) Porphyrin J-aggregates and Amine-Functionalized Carbon Nanotubes. Nanomaterials, 2020, 10, 669.	4.1	14
87	Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Analytical and Bioanalytical Chemistry, 2020, 412, 4681-4690.	3.7	14
88	State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles. Molecules, 2022, 27, 1134.	3.8	14
89	Biophenolâ^'Protein Supramolecular Models by Fast Atom Bombardment-Mass Spectrometric Experiments. Journal of Agricultural and Food Chemistry, 1997, 45, 2447-2451.	5.2	13
90	The Cannizzaro-like metabolites of secoiridoid glucosides in some olive cultivars. Journal of the Science of Food and Agriculture, 2004, 84, 341-349.	3.5	13

#	Article	IF	CITATIONS
91	Preparation of isoxazolidinyl nucleoside enantiomers by lipase-catalysed kinetic resolution. Tetrahedron: Asymmetry, 2009, 20, 425-429.	1.8	13
92	Hydrozirconation of four-, five-, six- and seven-membered N-alkoxycarbonyl lactams to lactamols. Tetrahedron Letters, 2011, 52, 6880-6882.	1.4	13
93	Reprofiling of fullâ€length phosphonated carbocyclic 2′â€oxaâ€3′â€azaâ€nucleosides toward antiproliferat agents: Synthesis, antiproliferative activity, and molecular docking study. Chemical Biology and Drug Design, 2017, 90, 679-689.	ive 3.2	13
94	3-Amino-2(5H)furanones as inhibitors of subgenomic hepatitis C virus RNA replication. Bioorganic and Medicinal Chemistry, 2008, 16, 9610-9615.	3.0	12
95	Diastereo- and Enantioselective Synthesis of 1′-C-BranchedN,O-Nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 739-742.	1.1	10
96	4′-α-C-Branched N,O-nucleosides: synthesis and biological properties. Bioorganic and Medicinal Chemistry, 2004, 12, 3903-3909.	3.0	10
97	Ensembleâ€based ADME–Tox profiling and virtual screening for the discovery of new inhibitors of the <i>Leishmania mexicana</i> cysteine protease CPB2.8ΔCTE. Chemical Biology and Drug Design, 2018, 91, 597-604.	3.2	10
98	Recent Highlights in the Synthesis of Anti-HCV Ribonucleosides. Current Medicinal Chemistry, 2014, 21, 1843-1860.	2.4	9
99	Linezolid nanoAntiobiotics and SERS-nanoTags based on polymeric cyclodextrin bimetallic core-shell nanoarchitectures. Carbohydrate Polymers, 2022, 293, 119736.	10.2	9
100	Synthesis and Anti-HIV Profile of a Novel Tetrahydroindazolylbenzamide Derivative Obtained by Oxazolone Chemistry. ACS Medicinal Chemistry Letters, 2019, 10, 398-401.	2.8	8
101	Design of naturally inspired jellyfish-shaped cyclopolylactides to manage osteosarcoma cancer stem cells fate. Materials Science and Engineering C, 2020, 117, 111291.	7.3	8
102	Enantioselective synthesis of isoxazolidinyl nucleosides containing uracil, 5-fluorouracil, thymine and cytosine as new potential anti-HIV drugs. Arkivoc, 2003, 2002, 159-167.	0.5	8
103	Intramolecular nitrone cycloaddition: Stereoselective synthesis of piperidine systems. Tetrahedron, 1996, 52, 14311-14322.	1.9	7
104	From Amino Acids to Enantiopure Bicyclic Isoxazolidinylpyridin-4(1H)-ones through Intramolecular Nitrone Cycloadditions. European Journal of Organic Chemistry, 2005, 2005, 2368-2373.	2.4	7
105	"Clickable―polylactic acids obtained by solvent free intra-chain amidation. European Polymer Journal, 2018, 109, 341-346.	5.4	7
106	PEGylated bis-adamantane carboxamide as guest bridge for graphene poly-cyclodextrin gold nanoassemblies. Journal of Molecular Structure, 2021, 1240, 130519.	3.6	7
107	Cancer-Related Intracellular Signalling Pathways Activated by DOXorubicin/Cyclodextrin-Graphene-Based Nanomaterials. Biomolecules, 2022, 12, 63.	4.0	7
108	Efficient synthesis of highly substituted tetrahydroindazolone derivatives. Molecular Diversity, 2015, 19, 473-480.	3.9	6

#	Article	IF	CITATIONS
109	Cyclodextrin Cationic Polymer-Based Nanoassemblies to Manage Inflammation by Intra-Articular Delivery Strategies. Nanomaterials, 2020, 10, 1712.	4.1	6
110	Synthesis of N,O- homonucleosides with high conformational freedom. Arkivoc, 2009, 2009, 168-176.	0.5	6
111	Stereoselective Synthesis of Enantiomerically Pure Isoxa-zolidine-fused d-Lactams. Heterocycles, 1999, 51, 37.	0.7	5
112	KLVFF oligopeptide-decorated amphiphilic cyclodextrin nanomagnets for selective amyloid beta recognition and fishing. Journal of Colloid and Interface Science, 2022, 613, 814-826.	9.4	5
113	Synthesis of pyrimidine-containing 3-aminobutenolides. Tetrahedron, 2004, 60, 6593-6596.	1.9	4
114	Shedding Light on the Chemistry and the Properties of Münchnone Functionalized Graphene. Nanomaterials, 2021, 11, 1629.	4.1	4
115	Carbon Nanomaterials for Therapy, Diagnosis and Biosensing. Nanomaterials, 2022, 12, 1597.	4.1	3
116	Corrigendum to "Enantioselective synthesis of homocarbocyclic-2′-oxa-3′-azanucleosides― Tetrahedron, 2007, 63, 4190.	1.9	2
117	Nanoconstructs Based on Cyclodextrins for Antimicrobial Applications. , 2017, , 229-244.		2
118	Reactions of Benzonitrile Oxide with Methoxypyrimidines and Pyrimidones. Heterocycles, 2005, 65, 1079.	0.7	1
119	Coumarin-Conjugated Multiwalled Carbon Nanotubes for Potential Biological Applications: Development and Characterization. Journal of Nanoscience and Nanotechnology, 2012, 12, 5030-5038.	0.9	1
120	Syntheses of New Chiral Bicyclic Sultams and Their Use as Auxiliaries in Asymmetric Conjugate Addition of Grignard Reagents ChemInform, 2003, 34, no.	0.0	0
121	Antimycoplasmal Activity of Oleuropein. , 2010, , 1355-1361.		0