Gary Aston-Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4805722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orexin-1 receptor signaling in ventral tegmental area mediates cue-driven demand for cocaine. Neuropsychopharmacology, 2022, 47, 741-751.	2.8	18
2	Chemogenetic inhibition of trigeminal ganglion neurons attenuates behavioural and neural pain responses in a model of trigeminal neuropathic pain. European Journal of Pain, 2022, 26, 634-647.	1.4	6
3	Hormonal milieu drives economic demand for cocaine in female rats. Neuropsychopharmacology, 2022, 47, 1484-1492.	2.8	5
4	Novelty preference does not predict trait cocaine behaviors in male rats. Addiction Neuroscience, 2022, 2, 100013.	0.4	2
5	Orexin Reserve: A Mechanistic Framework for the Role of Orexins (Hypocretins) in Addiction. Biological Psychiatry, 2022, 92, 836-844.	0.7	15
6	Sex Differences in Demand for Highly Palatable Foods: Role of the Orexin System. International Journal of Neuropsychopharmacology, 2021, 24, 54-63.	1.0	35
7	The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology, 2021, 183, 108359.	2.0	23
8	Intermittent selfâ€∎dministration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addiction Biology, 2021, 26, e12946.	1.4	46
9	The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. Frontiers of Neurology and Neuroscience, 2021, 45, 117-127.	3.0	12
10	A common limiter circuit for opioid choice and relapse identified in a rodent addiction model. Nature Communications, 2021, 12, 4788.	5.8	21
11	The sensation seeking trait confers a dormant susceptibility to addiction that is revealed by intermittent cocaine self-administration in rats. Neuropharmacology, 2021, 195, 108566.	2.0	11
12	Activation of medial hypothalamic orexin neurons during a Go/No-Go task. Brain Research, 2020, 1731, 145928.	1.1	12
13	The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Research, 2020, 1731, 146222.	1.1	18
14	Lateral septum inhibition reduces motivation for cocaine: Reversal by diazepam. Addiction Biology, 2020, 25, e12742.	1.4	16
15	Persistent effects of the orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain Research, 2020, 1731, 146461.	1.1	30
16	The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addiction Biology, 2020, 25, e12795.	1.4	36
17	Inhibitory designer receptors aggravate memory loss in a mouse model of down syndrome. Neurobiology of Disease, 2020, 134, 104616.	2.1	9
18	A brainstem-central amygdala circuit underlies defensive responses to learned threats. Molecular Psychiatry, 2020, 25, 640-654.	4.1	38

#	Article	IF	CITATIONS
19	Locus coeruleus: a new look at the blue spot. Nature Reviews Neuroscience, 2020, 21, 644-659.	4.9	316
20	Repurposing the dual orexin receptor antagonist suvorexant for the treatment of opioid use disorder: why sleep on this any longer?. Neuropsychopharmacology, 2020, 45, 717-719.	2.8	37
21	Introduction to the Special Issue: "Making orexin-based therapies for addiction a reality: What are the steps from here?― Brain Research, 2020, 1731, 146665.	1.1	14
22	Increased Number and Activity of a Lateral Subpopulation of Hypothalamic Orexin/Hypocretin Neurons Underlies the Expression ofÂan Addicted State in Rats. Biological Psychiatry, 2019, 85, 925-935.	0.7	135
23	The role of orexin-1 receptor signaling in demand for the opioid fentanyl. Neuropsychopharmacology, 2019, 44, 1690-1697.	2.8	56
24	Orexin-1 Receptor Signaling in Ventral Pallidum Regulates Motivation for the Opioid Remifentanil. Journal of Neuroscience, 2019, 39, 9831-9840.	1.7	42
25	Chemogenetic Manipulations of Ventral Tegmental Area Dopamine Neurons Reveal Multifaceted Roles in Cocaine Abuse. Journal of Neuroscience, 2019, 39, 503-518.	1.7	72
26	Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretinâ€1 receptor antagonist in rats. European Journal of Neuroscience, 2019, 50, 2602-2612.	1.2	46
27	Activation of lateral hypothalamic group III metabotropic glutamate receptors suppresses cocaine-seeking following abstinence and normalizes drug-associated increases in excitatory drive to orexin/hypocretin cells. Neuropharmacology, 2019, 154, 22-33.	2.0	14
28	CNO Evil? Considerations for the Use of DREADDs in Behavioral Neuroscience. Neuropsychopharmacology, 2018, 43, 934-936.	2.8	120
29	Attenuated cocaine-seeking after oxytocin administration in male and female rats. Psychopharmacology, 2018, 235, 2051-2063.	1.5	22
30	Dorsal Hippocampus Drives Context-Induced Cocaine Seeking via Inputs to Lateral Septum. Neuropsychopharmacology, 2018, 43, 987-1000.	2.8	80
31	Phasic locus coeruleus activity regulates cortical encoding of salience information. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9439-E9448.	3.3	160
32	Cued Reinstatement of Cocaine but Not Sucrose Seeking Is Dependent on Dopamine Signaling in Prelimbic Cortex and Is Associated with Recruitment of Prelimbic Neurons That Project to Contralateral Nucleus Accumbens Core. International Journal of Neuropsychopharmacology, 2018, 21, 89-94	1.0	43
33	Inhibiting subthalamic nucleus decreases cocaine demand and relapse: therapeutic potential. Addiction Biology, 2017, 22, 946-957.	1.4	11
34	Individual differences in orexinâ€l receptor modulation of motivation for the opioid remifentanil. Addiction Biology, 2017, 22, 303-317.	1.4	60
35	New directions for the treatment of depression: Targeting the photic regulation of arousal and mood (PRAM) pathway. Depression and Anxiety, 2017, 34, 588-595.	2.0	22
36	Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Research, 2017, 1654, 34-42.	1.1	79

#	Article	IF	CITATIONS
37	Orexin/Hypocretin, Central Amygdala, and Escalation of Cocaine Intake. Biological Psychiatry, 2017, 81, 552-553.	0.7	9
38	Oxytocin Acts in Nucleus Accumbens to Attenuate Methamphetamine Seeking and Demand. Biological Psychiatry, 2017, 81, 949-958.	0.7	84
39	Impact of gender on corticotropinâ€releasing factor and noradrenergic sensitivity in cocaine use disorder. Journal of Neuroscience Research, 2017, 95, 320-327.	1.3	14
40	Cocaine Seeking During Initial Abstinence Is Driven by Noradrenergic and Serotonergic Signaling in Hippocampus in a Sex-Dependent Manner. Neuropsychopharmacology, 2017, 42, 408-418.	2.8	15
41	Noradrenergic Regulation of Central Amygdala in Aversive Pavlovian-to-Instrumental Transfer. ENeuro, 2017, 4, ENEURO.0224-17.2017.	0.9	18
42	Role of Corticotropin Releasing Factor 1 Signaling in Cocaine Seeking during Early Extinction in Female and Male Rats. PLoS ONE, 2016, 11, e0158577.	1.1	12
43	A Decade of Orexin/Hypocretin and Addiction: Where Are We Now?. Current Topics in Behavioral Neurosciences, 2016, 33, 247-281.	0.8	141
44	The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Research, 2016, 1636, 74-80.	1.1	60
45	Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking. Journal of Neuroscience, 2016, 36, 10174-10180.	1.7	103
46	The Ventral Pallidum: Proposed Integrator of Positive and Negative Factors in Cocaine Abuse. Neuron, 2016, 92, 5-8.	3.8	5
47	Prelimbic to Accumbens Core Pathway Is Recruited in a Dopamine-Dependent Manner to Drive Cued Reinstatement of Cocaine Seeking. Journal of Neuroscience, 2016, 36, 8700-8711.	1.7	110
48	Chronic methamphetamine self-administration alters cognitive flexibility in male rats. Psychopharmacology, 2016, 233, 2319-2327.	1.5	22
49	Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. European Journal of Neuroscience, 2016, 43, 710-720.	1.2	57
50	Introduction to the special issue: "Role of corticostriatal circuits in addiction― Brain Research, 2015, 1628, 1.	1.1	4
51	Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Research, 2015, 1628, 130-146.	1.1	175
52	Designer Receptors Enhance Memory in a Mouse Model of Down Syndrome. Journal of Neuroscience, 2015, 35, 1343-1353.	1.7	61
53	Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal. Journal of Neuroscience, 2015, 35, 10290-10303.	1.7	74
54	Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9472-9477.	3.3	115

#	Article	IF	CITATIONS
55	Orexinâ€l receptor signaling increases motivation for cocaineâ€associated cues. European Journal of Neuroscience, 2015, 41, 1149-1156.	1.2	96
56	Modafinil attenuates reinstatement of cocaine seeking: role for cystine-glutamate exchange and metabotropic glutamate receptors. Addiction Biology, 2014, 19, 49-60.	1.4	41
57	Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3859-3864.	3.3	239
58	Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nature Neuroscience, 2014, 17, 577-585.	7.1	314
59	Post-Retrieval Extinction Attenuates Cocaine Memories. Neuropsychopharmacology, 2014, 39, 1059-1065.	2.8	45
60	Economic demand predicts addiction-like behavior and therapeutic efficacy of oxytocin in the rat. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11822-11827.	3.3	139
61	Orbitofrontal Cortical Neurons Encode Expectation-Driven Initiation of Reward-Seeking. Journal of Neuroscience, 2014, 34, 10234-10246.	1.7	99
62	Role of orexin/hypocretin in conditioned sucrose-seeking in female rats. Neuropharmacology, 2014, 86, 97-102.	2.0	38
63	Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nature Neuroscience, 2014, 17, 1298-1303.	7.1	304
64	Incentive Learning for Morphine-Associated Stimuli During Protracted Abstinence Increases Conditioned Drug Preference. Neuropsychopharmacology, 2014, 39, 373-379.	2.8	9
65	Designer receptors: therapeutic adjuncts to cell replacement therapy in Parkinson's disease. Journal of Clinical Investigation, 2014, 124, 2858-2860.	3.9	5
66	Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist. Psychopharmacology, 2013, 228, 499-507.	1.5	49
67	Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology, 2013, 226, 687-698.	1.5	130
68	The behavioral economics of drug self-administration: A review and new analytical approach for within-session procedures. Psychopharmacology, 2013, 226, 113-125.	1.5	127
69	Role of orexin/hypocretin in conditioned sucrose-seeking in rats. Psychopharmacology, 2013, 226, 155-165.	1.5	88
70	Recent advances in optogenetics and pharmacogenetics. Brain Research, 2013, 1511, 1-5.	1.1	79
71	New tricks for old dogmas: Optogenetic and designer receptor insights for Parkinson's disease. Brain Research, 2013, 1511, 153-163.	1.1	24
72	Multiple roles for orexin/hypocretin in addiction. Progress in Brain Research, 2012, 198, 79-121.	0.9	181

#	Article	IF	CITATIONS
73	Lateral Hypothalamic Orexin/Hypocretin Neurons That Project to Ventral Tegmental Area Are Differentially Activated with Morphine Preference. Journal of Neuroscience, 2012, 32, 3809-3817.	1.7	79
74	Regulation of the ventral tegmental area by the bed nucleus of the stria terminalis is required for expression of cocaine preference. European Journal of Neuroscience, 2012, 36, 3549-3558.	1.2	44
75	Repeated orexin 1 receptor antagonism effects on cocaine seeking in rats. Neuropharmacology, 2012, 63, 1201-1207.	2.0	72
76	The emerging role of norepinephrine in cognitive dysfunctions of Parkinson's disease. Frontiers in Behavioral Neuroscience, 2012, 6, 48.	1.0	100
77	Orexin / hypocretin 1 receptor antagonist reduces heroin selfâ€administration and cueâ€induced heroin seeking. European Journal of Neuroscience, 2012, 35, 798-804.	1.2	110
78	Use of vivo-morpholinos for control of protein expression in the adult rat brain. Journal of Neuroscience Methods, 2012, 203, 354-360.	1.3	46
79	α2 Adrenergic and Imidazoline Receptor Agonists Prevent Cue-Induced Cocaine Seeking. Biological Psychiatry, 2011, 70, 712-719.	0.7	65
80	Linking Context with Reward: A Functional Circuit from Hippocampal CA3 to Ventral Tegmental Area. Science, 2011, 333, 353-357.	6.0	343
81	A Noradrenergic Lesion Exacerbates Neurodegeneration in a Down Syndrome Mouse Model. Journal of Alzheimer's Disease, 2011, 23, 471-489.	1.2	48
82	The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 2011, 48, 162-175.	1.2	366
83	Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Research, 2010, 1314, 74-90.	1.1	329
84	Special issue on neuropeptides in stress and addiction: Overview. Brain Research, 2010, 1314, 1-2.	1.1	6
85	3-Monoiodothyronamine: The rationale for its action as an endogenous adrenergic-blocking neuromodulator. Brain Research, 2010, 1351, 130-140.	1.1	31
86	Orexin/Hypocretin Modulates Response of Ventral Tegmental Dopamine Neurons to Prefrontal Activation: Diurnal Influences. Journal of Neuroscience, 2010, 30, 15585-15599.	1.7	106
87	Modafinil Blocks Reinstatement of Extinguished Opiate-Seeking in Rats: Mediation by a Glutamate Mechanism. Neuropsychopharmacology, 2010, 35, 2203-2210.	2.8	44
88	Modafinil: an anti-relapse medication. Neuropsychopharmacology, 2010, 35, 343-344.	2.8	3
89	Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiology and Behavior, 2010, 100, 419-428.	1.0	198
90	Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology, 2010, 58, 179-184.	2.0	130

#	Article	IF	CITATIONS
91	Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology, 2010, 35, 301-316.	2.8	306
92	Optical control of reward. Nature, 2009, 458, 980-981.	13.7	2
93	Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. European Journal of Neuroscience, 2009, 29, 748-760.	1.2	104
94	Orexin/hypocretin signaling at the orexin 1 receptor regulates cueâ€elicited cocaineâ€seeking. European Journal of Neuroscience, 2009, 30, 493-503.	1.2	209
95	Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol–preferring Sprague–Dawley rats. Alcohol, 2009, 43, 379-386.	0.8	131
96	Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology, 2009, 56, 112-121.	2.0	259
97	Role of the bed nucleus of the stria terminalis in the control of ventral tegmental area dopamine neurons. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 1336-1346.	2.5	87
98	How We Say No: Norepinephrine, Inferior Frontal Gyrus, and Response Inhibition. Biological Psychiatry, 2009, 65, 548-549.	0.7	28
99	Adrenergic and Noradrenergic Innervation of the Midbrain Ventral Tegmental Area and Retrorubral Field: Prominent Inputs from Medullary Homeostatic Centers. Journal of Neuroscience, 2009, 29, 3613-3626.	1.7	116
100	Inactivating the activated: identifying functions of specific neural networks. Nature Neuroscience, 2009, 12, 965-966.	7.1	0
101	Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Structure and Function, 2008, 213, 43-61.	1.2	194
102	Role of orexin input in the diurnal rhythm of locus coeruleus impulse activity. Brain Research, 2008, 1224, 43-52.	1.1	75
103	Brain Norepinephrine Rediscovered in Addiction Research. Biological Psychiatry, 2008, 63, 1005-1006.	0.7	42
104	Selective Loss of Catecholaminergic Wake–Active Neurons in a Murine Sleep Apnea Model. Journal of Neuroscience, 2007, 27, 10060-10071.	1.7	167
105	Activation in extended amygdala corresponds to altered hedonic processing during protracted morphine withdrawal. Behavioural Brain Research, 2007, 176, 251-258.	1.2	69
106	Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behavioural Brain Research, 2007, 183, 43-51.	1.2	176
107	Arousal and reward: a dichotomy in orexin function. Trends in Neurosciences, 2006, 29, 571-577.	4.2	531
108	Circadian Regulation of Arousal: Role of the Noradrenergic Locus Coeruleus System and Light Exposure. Sleep, 2006, 29, 1327-1336.	0.6	108

#	Article	IF	CITATIONS
109	No Effect of Morphine on Ventral Tegmental Dopamine Neurons during Withdrawal. Journal of Neuroscience, 2006, 26, 5720-5726.	1.7	91
110	A role for lateral hypothalamic orexin neurons in reward seeking. Nature, 2005, 437, 556-559.	13.7	1,165
111	Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. Journal of Comparative Neurology, 2005, 493, 99-110.	0.9	499
112	Brain structures and receptors involved in alertness. Sleep Medicine, 2005, 6, S3-S7.	0.8	143
113	AN INTEGRATIVE THEORY OF LOCUS COERULEUS-NOREPINEPHRINE FUNCTION: Adaptive Gain and Optimal Performance. Annual Review of Neuroscience, 2005, 28, 403-450.	5.0	3,369
114	Decision making, the P3, and the locus coeruleusnorepinephrine system Psychological Bulletin, 2005, 131, 510-532.	5.5	1,350
115	Numerous GABAergic Afferents to Locus Ceruleus in the Pericerulear Dendritic Zone: Possible Interneuronal Pool. Journal of Neuroscience, 2004, 24, 2313-2321.	1.7	137
116	Phasic Activation of Monkey Locus Ceruleus Neurons by Simple Decisions in a Forced-Choice Task. Journal of Neuroscience, 2004, 24, 9914-9920.	1.7	216
117	The Influence of Spike Rate and Stimulus Duration on Noradrenergic Neurons. Journal of Computational Neuroscience, 2004, 17, 13-29.	0.6	39
118	Brain substrates for increased drug seeking during protracted withdrawal. Neuropharmacology, 2004, 47, 167-179.	2.0	206
119	Activation of Monkey Locus Coeruleus Neurons Varies With Difficulty and Performance in a Target Detection Task. Journal of Neurophysiology, 2004, 92, 361-371.	0.9	186
120	Enhanced Morphine Preference Following Prolonged Abstinence: Association with Increased Fos Expression in the Extended Amygdala. Neuropsychopharmacology, 2003, 28, 292-299.	2.8	87
121	Prolonged Activation of Mesolimbic Dopaminergic Neurons by Morphine Withdrawal Following Clonidine: Participation of Imidazoline and Norepinephrine Receptors. Neuropsychopharmacology, 2003, 28, 1140-1149.	2.8	44
122	Altered Motivation and Learning Following Opiate Withdrawal: Evidence for Prolonged Dysregulation of Reward Processing. Neuropsychopharmacology, 2003, 28, 865-871.	2.8	88
123	Critical Role for Ventral Tegmental Glutamate in Preference for a Cocaine-Conditioned Environment. Neuropsychopharmacology, 2003, 28, 73-76.	2.8	140
124	Activation of Ventral Tegmental Area Cells by the Bed Nucleus of the Stria Terminalis: A Novel Excitatory Amino Acid Input to Midbrain Dopamine Neurons. Journal of Neuroscience, 2002, 22, 5173-5187.	1.7	249
125	Potent Regulation of Midbrain Dopamine Neurons by the Bed Nucleus of the Stria Terminalis. Journal of Neuroscience, 2001, 21, RC160-RC160.	1.7	139
126	Local Opiate Withdrawal in Locus Coeruleus Neurons In Vitro. Journal of Neurophysiology, 2001, 85, 2388-2397.	0.9	66

#	Article	IF	CITATIONS
127	Preference for a cocaine-associated environment is attenuated by augmented accumbal serotonin in cocaine withdrawn rats. Psychopharmacology, 2001, 156, 14-22.	1.5	29
128	A neural circuit for circadian regulation of arousal. Nature Neuroscience, 2001, 4, 732-738.	7.1	546
129	Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. NeuroReport, 2000, 11, 1755-1758.	0.6	161
130	Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. Journal of Neuroscience Methods, 2000, 103, 51-61.	1.3	99
131	Locus coeruleus and regulation of behavioral flexibility and attention. Progress in Brain Research, 2000, 126, 165-182.	0.9	299
132	Breaking the chain of addiction. Nature, 1999, 400, 317-319.	13.7	15
133	The Bed Nucleus of the Stria Terminalis: A Target Site for Noradrenergic Actions in Opiate Withdrawal. Annals of the New York Academy of Sciences, 1999, 877, 486-498.	1.8	221
134	Characterization of transsynaptic tracing with central application of pseudorabies virus. Brain Research, 1999, 838, 171-183.	1.1	56
135	Editorial. Neuropsychopharmacology, 1999, 20, 509-512.	2.8	2
136	Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. Journal of Comparative Neurology, 1999, 415, 145-159.	0.9	636
137	The Role of Locus Coeruleus in the Regulation of Cognitive Performance. Science, 1999, 283, 549-554.	6.0	667
138	Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 1999, 46, 1309-1320.	0.7	793
139	Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. , 1999, 415, 145.		3
140	Fos expression in rat pontine tegmental neurons following activation of the medial preoptic area. Brain Research, 1998, 789, 256-262.	1.1	12
141	Activation of locus coeruleus by prefrontal cortex is mediated by excitatory amino acid inputs. Brain Research, 1997, 768, 327-332.	1.1	88
142	Evidence for divergent projections to the brain noradrenergic system and the spinal parasympathetic system from Barrington's nucleus. Brain Research, 1996, 732, 1-15.	1.1	116
143	Enhanced norepinephrine release in prefrontal cortex with burst stimulation of the locus coeruleus. Brain Research, 1996, 742, 89-97.	1.1	212
144	Dendrites of locus coeruleus neurons extend preferentially into two pericoerulear zones. , 1996, 365, 56-68.		126

#	Article	IF	CITATIONS
145	Chapter 23 Role of the locus coeruleus in emotional activation. Progress in Brain Research, 1996, 107, 379-402.	0.9	219
146	Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. Brain Research, 1995, 674, 107-111.	1.1	105
147	Anatomical evidence for inputs to ventrolateral medullary catecholaminergic neurons from the midbrain periaqueductal gray of the rat. Neuroscience Letters, 1995, 195, 140-144.	1.0	24
148	Preoptic projections to Barringon's nucleus and the pericoerulear region: Architecture and terminal organization. Journal of Comparative Neurology, 1994, 347, 1-24.	0.9	83
149	Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature, 1994, 371, 155-157.	13.7	199
150	β-adrenergic antagonists attenuate withdrawal anxiety in cocaine-and morphine-dependent rats. Psychopharmacology, 1993, 113, 131-136.	1.5	124
151	Sensoryr responsiveness of brain noradrenergic neurons in modulated by endogenous brain serotonin. Brain Research, 1993, 623, 72-76.	1.1	24
152	Beta-Adrenergic Antagonists Attenuate Somatic and Aversive Signs of Opiate Withdrawal. Neuropsychopharmacology, 1993, 9, 303-311.	2.8	44
153	Acute morphine induces oscillatory discharge of noradrenergic locus coeruleus neurons in the waking monkey. Neuroscience Letters, 1992, 140, 219-224.	1.0	14
154	Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission. Brain Research, 1992, 598, 185-195.	1.1	125
155	Distinct populations of neurons in the ventromedial periaqueductal gray project to the rostral ventral medulla and abducens nucleus. Brain Research, 1992, 576, 59-67.	1.1	25
156	Local application of bicuculline potentiates NMDA-receptor-mediated sensory responses of brain noradrenergic neurons. Synapse, 1992, 10, 54-61.	0.6	20
157	NMDA-receptor-mediated sensory responses of brain noradrenergic neurons are suppressed by in vivo concentrations of extracellular magnesium. Synapse, 1992, 10, 103-109.	0.6	29
158	Local infusion of calcium-free solutions in vivo activates locus coeruleus neurons. Brain Research Bulletin, 1991, 27, 5-12.	1.4	18
159	Projections from the periaqueductal gray to the rostromedial pericoerulear region and nucleus locus coeruleus: Anatomic and physiologic studies. Journal of Comparative Neurology, 1991, 306, 480-494.	0.9	102
160	Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat. Journal of Comparative Neurology, 1991, 309, 305-327.	0.9	179
161	Anatomical evidence for multiple pathways leading from the rostral ventrolateral medulla (nucleus) Tj ETQq1 1 ().784314 r 1.0	gBT /Overloci
162	Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. Journal of Comparative Neurology, 1989, 285, 339-349.	0.9	208

#	Article	IF	CITATIONS
163	Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: Retrograde and anterograde tracing studies. Journal of Comparative Neurology, 1989, 290, 561-584.	0.9	228
164	Potent inhibitory input to locus coeruleus from the nucleus prepositus hypoglossi. Brain Research Bulletin, 1989, 22, 793-803.	1.4	78
165	The iontophoretic application of Fluoro-Gold for the study of afferents to deep brain nuclei. Brain Research, 1988, 475, 259-271.	1.1	107
166	Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Research Bulletin, 1988, 21, 401-410.	1.4	189
167	The neurophysiology of aging: Insights from new applications of old techniques. Neurobiology of Aging, 1988, 9, 601-605.	1.5	0
168	Adrenergic and non-adrenergic neurons in the C1 and C3 areas project to locus coeruleus: A fluorescent double labeling study. Neuroscience Letters, 1988, 85, 297-303.	1.0	94
169	Two physiologically distinct populations of neurons in the ventrolateral medulla innervate the locus coeruleus. Brain Research, 1987, 425, 275-282.	1.1	190
170	A potent excitatory input to the nucleus locus coeruleus from the ventrolateral medulla. Neuroscience Letters, 1986, 71, 299-305.	1.0	234
171	Evidence for self- and neighbor-mediated postactivation inhibition of locus coeruleus neurons. Brain Research, 1986, 374, 299-305.	1.1	215
172	Age-impaired impulse flow from nucleus basalis to cortex. Nature, 1985, 318, 462-464.	13.7	69
173	Nucleus basalis neurons exhibit axonal branching with decreased impulse conduction velocity in rat cerebrocortex. Brain Research, 1985, 325, 271-285.	1.1	57
174	Chronic haloperidol inactivates brain noradrenergic neurons. Brain Research, 1985, 325, 385-388.	1.1	28
175	Behavioral functions of locus coeruleus derived from cellular attributes. Physiological Psychology, 1985, 13, 118-126.	0.8	240
176	Cocaine antagonizes anxiolytic effects of ethanol. Psychopharmacology, 1984, 84, 28-31.	1.5	39
177	Cortically projecting nucleus basalis neurons in rat are physiologically heterogeneous. Neuroscience Letters, 1984, 46, 19-24.	1.0	61
178	Acute haloperidol increases impulse activity of brain noradrenergic neurons. Brain Research, 1984, 307, 359-362.	1.1	29
179	Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Research, 1983, 270, 363-367.	1.1	606
180	Low doses of ethanol disrupt sensory responses of brain noradrenergic neurones. Nature, 1982, 296, 857-860.	13.7	100

#	Article	IF	CITATIONS
181	Brain aminergic axons exhibit marked variability in conduction velocity. Brain Research, 1980, 195, 215-222.	1.1	106