List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4803790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precision synthesis of reducing-end thiol-modified cellulose enabled by enzyme selection. Polymer Journal, 2022, 54, 551-560.	2.7	6
2	Kombination einer genetisch engineerten Oxidase mit wasserstoffbrückengebundenen organischen Gerüsten (HOFs) für hocheffiziente Biokomposite. Angewandte Chemie, 2022, 134, .	2.0	3
3	Biocatalytic Production of 2-α-d-Glucosyl-glycerol for Functional Ingredient Use: Integrated Process Design and Techno-Economic Assessment. ACS Sustainable Chemistry and Engineering, 2022, 10, 1246-1255.	6.7	6
4	Combining a Genetically Engineered Oxidase with Hydrogenâ€Bonded Organic Frameworks (HOFs) for Highly Efficient Biocomposites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	46
5	Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase. ACS Catalysis, 2022, 12, 3357-3370.	11.2	5
6	Immobilization of CMPâ€Sialic Acid Synthetase and α2,3â€Sialyltransferase for Cascade Synthesis of 3′â€Sialy βâ€Dâ€Galactoside with Enzyme Reuse. ChemCatChem, 2022, 14, .	9 3.7	8
7	Engineering cascade biocatalysis in whole cells for bottom-up synthesis of cello-oligosaccharides: flux control over three enzymatic steps enables soluble production. Microbial Cell Factories, 2022, 21, 61.	4.0	7
8	Monitoring and control of the release of soluble O ₂ from H ₂ O ₂ inside porous enzyme carrier for O ₂ supply to an immobilized Dâ€amino acid oxidase. Biotechnology and Bioengineering, 2022, , .	3.3	4
9	Hydride Transfer Mechanism of Enzymatic Sugar Nucleotide C2 Epimerization Probed with a Loose-Fit CDP-Glucose Substrate. ACS Catalysis, 2022, 12, 6816-6830.	11.2	4
10	Ionic liquid as dual-function catalyst and solvent for efficient synthesis of sucrose fatty acid esters. Molecular Catalysis, 2022, 526, 112371.	2.0	4
11	Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnology Advances, 2021, 51, 107633.	11.7	32
12	Mechanistic characterization of UDPâ€glucuronic acid 4â€epimerase. FEBS Journal, 2021, 288, 1163-1178.	4.7	16
13	Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: the CDP-Tyvelose 2-Epimerase from Thermodesulfatator atlanticus for Glucose/Mannose Interconversion. Applied and Environmental Microbiology, 2021, 87, .	3.1	5
14	Stereo-electronic control of reaction selectivity in short-chain dehydrogenases: Decarboxylation, epimerization, and dehydration. Current Opinion in Chemical Biology, 2021, 61, 43-52.	6.1	14
15	Pushing the limits: Cyclodextrin-based intensification of bioreductions. Journal of Biotechnology, 2021, 325, 57-64.	3.8	5
16	Optimal parameters in variableâ€velocity scanning luminescence lifetime microscopy. Microscopy Research and Technique, 2021, 84, 71-78.	2.2	1
17	Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews, 2021, 121, 1077-1129.	47.7	372
18	Glycosyltransferase Coâ€Immobilization for Natural Product Glycosylation: Cascade Biosynthesis of the <i>C</i> â€Glucoside Nothofagin with Efficient Reuse of Enzymes. Advanced Synthesis and Catalysis, 2021, 363, 2157-2169.	4.3	22

#	Article	IF	CITATIONS
19	Whole cell-based catalyst for enzymatic production of the osmolyte 2-O-α-glucosylglycerol. Microbial Cell Factories, 2021, 20, 79.	4.0	16
20	Editorial: Biocatalytic opportunities to harness the structural diversity of carbohydrates. Current Opinion in Chemical Biology, 2021, 61, A1-A3.	6.1	0
21	Reducing end thiol-modified nanocellulose: Bottom-up enzymatic synthesis and use for templated assembly of silver nanoparticles into biocidal composite material. Carbohydrate Polymers, 2021, 260, 117772.	10.2	14
22	Selective β-Mono-Glycosylation of a C15-Hydroxylated Metabolite of the Agricultural Herbicide Cinmethylin Using Leloir Glycosyltransferases. Journal of Agricultural and Food Chemistry, 2021, 69, 5491-5499.	5.2	4
23	Kinetic modeling of phosphorylase-catalyzed iterative β-1,4-glycosylation for degree of polymerization-controlled synthesis of soluble cello-oligosaccharides. Biotechnology for Biofuels, 2021, 14, 134.	6.2	5
24	Continuous process technology for glucoside production from sucrose using a whole cell-derived solid catalyst of sucrose phosphorylase. Applied Microbiology and Biotechnology, 2021, 105, 5383-5394.	3.6	8
25	Threeâ€level hybrid modeling for systematic optimization of biocatalytic synthesis: αâ€glucosyl glycerol production by enzymatic transâ€glycosylation from sucrose. Biotechnology and Bioengineering, 2021, 118, 4028-4040.	3.3	4
26	Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural <i>C</i> â€glycoside nothofagin. Biotechnology and Bioengineering, 2021, 118, 4402-4413.	3.3	20
27	Engineering analysis of multienzyme cascade reactions for 3ʹâ€sialyllactose synthesis. Biotechnology and Bioengineering, 2021, 118, 4290-4304.	3.3	10
28	Nanoporous gold electrodes modified with self-assembled monolayers for electrochemical control of the surface charge. Physical Chemistry Chemical Physics, 2021, 23, 14457-14464.	2.8	4
29	Reductive enzymatic dynamic kinetic resolution affording 115 g/LÂ(S)-2-phenylpropanol. BMC Biotechnology, 2021, 21, 58.	3.3	2
30	Processive Enzymes Kept on a Leash: How Cellulase Activity in Multienzyme Complexes Directs Nanoscale Deconstruction of Cellulose. ACS Catalysis, 2021, 11, 13530-13542.	11.2	14
31	Controllable Iterative Î ² -Clucosylation from UDP-Clucose by Bacillus cereus Glycosyltransferase GT1: Application for the Synthesis of Disaccharide-Modified Xenobiotics. Journal of Agricultural and Food Chemistry, 2021, 69, 14630-14642.	5.2	2
32	Threeâ€Enzyme Phosphorylase Cascade for Integrated Production of Shortâ€Chain Cellodextrins. Biotechnology Journal, 2020, 15, e1900349.	3.5	21
33	Threeâ€Enzyme Phosphorylase Cascade Immobilized on Solid Support for Biocatalytic Synthesis of Celloâ^'oligosaccharides. ChemCatChem, 2020, 12, 1350-1358.	3.7	27
34	Unexpected NADPH Hydratase Activity in the Nitrile Reductase QueF from <i>Escherichia coli</i> . ChemBioChem, 2020, 21, 1534-1543.	2.6	2
35	On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140333.	2.3	38
36	Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnology Advances, 2020, 44, 107613.	11.7	24

#	Article	IF	CITATIONS
37	Crystallographic snapshots of UDP-glucuronic acid 4-epimerase ligand binding, rotation, and reduction. Journal of Biological Chemistry, 2020, 295, 12461-12473.	3.4	7
38	Plasmid Design for Tunable Twoâ€Enzyme Coâ€Expression Promotes Wholeâ€Cell Production of Cellobiose. Biotechnology Journal, 2020, 15, e2000063.	3.5	13
39	Design of the Enzyme–Carrier Interface to Overcome the O ₂ and NADH Mass Transfer Limitations of an Immobilized Flavin Oxidase. ACS Applied Materials & Interfaces, 2020, 12, 56027-56038.	8.0	23
40	Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis. Journal of Biotechnology, 2020, 322, 74-78.	3.8	8
41	Short-Chain Cello-oligosaccharides: Intensification and Scale-up of Their Enzymatic Production and Selective Growth Promotion among Probiotic Bacteria. Journal of Agricultural and Food Chemistry, 2020, 68, 8557-8567.	5.2	41
42	Reverse C-glycosidase reaction provides C-nucleotide building blocks of xenobiotic nucleic acids. Nature Communications, 2020, 11, 6270.	12.8	12
43	Separation behavior and microstructure of emulsified, two-phasic E. coli bioreaction mixtures. Colloids and Interface Science Communications, 2020, 35, 100248.	4.1	2
44	Process intensification for cytochrome P450 BM3â€catalyzed oxyâ€functionalization of dodecanoic acid. Biotechnology and Bioengineering, 2020, 117, 2377-2388.	3.3	17
45	A Biological Nanomachine at Work: Watching the Cellulosome Degrade Crystalline Cellulose. ACS Central Science, 2020, 6, 739-746.	11.3	24
46	On the donor substrate dependence of groupâ€transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylaseâ€catalyzed transglycosylation. Biotechnology and Bioengineering, 2020, 117, 2933-2943.	3.3	13
47	Removal of glycerol from enzymatically produced 2-î±-d-glucosyl-glycerol by discontinuous diafiltration. Separation and Purification Technology, 2020, 241, 116749.	7.9	13
48	Reactive extraction of fructose for efficient separation of sucrose-derived glucosides produced by enzymatic glycosylation. Green Chemistry, 2020, 22, 4985-4994.	9.0	8
49	Clycosynthase reaction meets the flow: Continuous synthesis of lactoâ€∢i>Nâ€ŧriose II by engineered βâ€hexosaminidase immobilized on solid support. Biotechnology and Bioengineering, 2020, 117, 1597-1602.	3.3	33
50	Magnetically responsive horseradish peroxidase@ZIF-8 for biocatalysis. Chemical Communications, 2020, 56, 5775-5778.	4.1	41
51	Enzyme Immobilization in Wall-Coated Flow Microreactors. Methods in Molecular Biology, 2020, 2100, 243-257.	0.9	4
52	Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnology Advances, 2020, 43, 107568.	11.7	53
53	Leloir glycosyltransferases of natural product <i>C</i> -glycosylation: structure, mechanism and specificity. Biochemical Society Transactions, 2020, 48, 1583-1598.	3.4	27
54	Intraparticle pH Sensing Within Immobilized Enzymes: Immobilized Yellow Fluorescent Protein as Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Particles. Methods in Molecular Biology, 2020, 2100, 319-333.	0.9	1

#	Article	IF	CITATIONS
55	P450 _{Jα} : A New, Robust and αâ€Selective Fatty Acid Hydroxylase Displaying Unexpected 1â€Alkene Formation. Chemistry - A European Journal, 2020, 26, 15910-15921.	3.3	8
56	Pharmaceutical use of nanocellulose produced by enzymes. Makedonsko Farmacevtski Bilten, 2020, 66, 125-126.	0.0	0
57	Demystifying the Flow: Biocatalytic Reaction Intensification in Microstructured Enzyme Reactors. Biotechnology Journal, 2019, 14, 1800244.	3.5	18
58	The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles. Biotechnology for Biofuels, 2019, 12, 238.	6.2	68
59	The Microenvironment in Immobilized Enzymes: Methods of Characterization and Its Role in Determining Enzyme Performance. Molecules, 2019, 24, 3460.	3.8	48
60	Decoupling of recombinant protein production from <i>Escherichia coli</i> cell growth enhances functional expression of plant Leloir glycosyltransferases. Biotechnology and Bioengineering, 2019, 116, 1259-1268.	3.3	22
61	Interplay of nucleophilic catalysis with proton transfer in the nitrile reductase QueF from <i>Escherichia coli</i> . Catalysis Science and Technology, 2019, 9, 842-853.	4.1	3
62	Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum. Organic and Biomolecular Chemistry, 2019, 17, 5661-5665.	2.8	21
63	Product solubility control in cellooligosaccharide production by coupled cellobiose and cellodextrin phosphorylase. Biotechnology and Bioengineering, 2019, 116, 2146-2155.	3.3	33
64	Glycosynthase Principle Transformed into Biocatalytic Process Technology: Lacto- <i>N</i> -triose II Production with Engineered <i>exo</i> -Hexosaminidase. ACS Catalysis, 2019, 9, 5503-5514.	11.2	43
65	A Parsimonious Mechanism of Sugar Dehydration by Human GDP-Mannose-4,6-dehydratase. ACS Catalysis, 2019, 9, 2962-2968.	11.2	18
66	Deciphering the enzymatic mechanism of sugar ring contraction in UDP-apiose biosynthesis. Nature Catalysis, 2019, 2, 1115-1123.	34.4	16
67	Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry. Beilstein Journal of Nanotechnology, 2019, 10, 2275-2279.	2.8	2
68	Preparative Asymmetric Synthesis of Canonical and Nonâ€canonical αâ€amino Acids Through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids. Advanced Synthesis and Catalysis, 2019, 361, 1348-1358.	4.3	22
69	Process intensification for O ₂ â€dependent enzymatic transformations in continuous singleâ€phase pressurized flow. Biotechnology and Bioengineering, 2019, 116, 503-514.	3.3	37
70	Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A. Biotechnology and Bioengineering, 2019, 116, 515-525.	3.3	6
71	Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices. ACS Applied Materials & Interfaces, 2018, 10, 6858-6868.	8.0	18
72	Evidence of a sequestered imine intermediate during reduction of nitrile to amine by the nitrile reductase QueF from Escherichia coli. Journal of Biological Chemistry, 2018, 293, 3720-3733.	3.4	5

#	Article	IF	CITATIONS
73	Biochemical Characterization and Mechanistic Analysis of the Levoglucosan Kinase from <i>Lipomyces starkeyi</i> . ChemBioChem, 2018, 19, 596-603.	2.6	14
74	l-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Microbial Cell Factories, 2018, 17, 59.	4.0	27
75	Humane Enzyme für die organische Synthese. Angewandte Chemie, 2018, 130, 13592-13610.	2.0	6
76	Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis, 2018, 449, 106-113.	2.0	8
77	Human Enzymes for Organic Synthesis. Angewandte Chemie - International Edition, 2018, 57, 13406-13423.	13.8	40
78	Singleâ€Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem, 2018, 10, 654-665.	3.7	20
79	Bioâ€based α,ï‰â€Functionalized Hydrocarbons from Multiâ€step Reaction Sequences with Bio―and Metalloâ€catalysts Based on the Fatty Acid Decarboxylase OleT _{JE} . ChemCatChem, 2018, 10, 1192-1201.	3.7	34
80	Glycosyltransferase cascades made fit for chemical production: Integrated biocatalytic process for the natural polyphenol <i>C</i> â€glucoside nothofagin. Biotechnology and Bioengineering, 2018, 115, 545-556.	3.3	36
81	β-Glucosyl Fluoride as Reverse Reaction Donor Substrate and Mechanistic Probe of Inverting Sugar Nucleotide-Dependent Glycosyltransferases. ACS Catalysis, 2018, 8, 9148-9153.	11.2	10
82	Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catalysis, 2018, 8, 6283-6300.	11.2	133
83	A tailorâ€made, selfâ€sufficient and recyclable monooxygenase catalyst based on coimmobilized cytochrome P450 BM3 and glucose dehydrogenase. Biotechnology and Bioengineering, 2018, 115, 2416-2425.	3.3	27
84	New flavanol O-glycosides in grape and wine. Food Chemistry, 2018, 266, 441-448.	8.2	30
85	Sequence determinants of nucleotide binding in Sucrose Synthase: improving the affinity of a bacterial Sucrose Synthase for UDP by introducing plant residues. Protein Engineering, Design and Selection, 2017, 30, 141-148.	2.1	8
86	Isotope Probing of the UDPâ€Apiose/UDPâ€Xylose Synthase Reaction: Evidence of a Mechanism via a Coupled Oxidation and Aldol Cleavage. Angewandte Chemie - International Edition, 2017, 56, 2503-2507.	13.8	13
87	Integration of whole-cell reaction and product isolation: Highly hydrophobic solvents promote in situ substrate supply and simplify extractive product isolation. Journal of Biotechnology, 2017, 257, 110-117.	3.8	13
88	Biocatalytic Cascade of Polyphosphate Kinase and Sucrose Synthase for Synthesis of Nucleotideâ€Activated Derivatives of Glucose. Advanced Synthesis and Catalysis, 2017, 359, 292-301.	4.3	30
89	Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format. Journal of Biotechnology, 2017, 257, 131-138.	3.8	40
90	Glycosyltransferase cascades for natural product glycosylation: Use of plant instead of bacterial sucrose synthases improves the UDPâ€glucose recycling from sucrose and UDP. Biotechnology Journal, 2017, 12, 1600557.	3.5	36

#	Article	IF	CITATIONS
91	Walking a Fine Line with Sucrose Phosphorylase: Efficient Singleâ€Step Biocatalytic Production of <scp>l</scp> â€Ascorbic Acid 2â€Glucoside from Sucrose. ChemBioChem, 2017, 18, 1387-1390.	2.6	19
92	Tailor-made resealable micro(bio)reactors providing easy integration of <i>in situ</i> sensors. Journal of Micromechanics and Microengineering, 2017, 27, 065012.	2.6	10
93	Activeâ€Site His85 of <i>Pasteurella dagmatis</i> Sialyltransferase Facilitates Productive Sialyl Transfer and So Prevents Futile Hydrolysis of CMPâ€Neu5Ac. ChemBioChem, 2017, 18, 1544-1550.	2.6	11
94	Oriented Coimmobilization of Oxidase and Catalase on Tailor-Made Ordered Mesoporous Silica. Langmuir, 2017, 33, 5065-5076.	3.5	39
95	Binding pattern of intermediate UDP-4-keto-xylose to human UDP-xylose synthase: Synthesis and STD NMR of model keto-saccharides. Carbohydrate Research, 2017, 437, 50-58.	2.3	5
96	Single-molecule study of oxidative enzymatic deconstruction of cellulose. Nature Communications, 2017, 8, 894.	12.8	86
97	A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels. ACS Applied Materials & Interfaces, 2017, 9, 34641-34649.	8.0	46
98	An ortho C-methylation/O-glycosylation motif on a hydroxy-coumarin scaffold, selectively installed by biocatalysis. Organic and Biomolecular Chemistry, 2017, 15, 7917-7924.	2.8	11
99	Reaktion von UDPâ€Apiose/UDPâ€Xyloseâ€Synthase mit isotopenmarkierten Substraten: Hinweise auf einen Mechanismus mit gekoppelter Oxidation und Aldolspaltung. Angewandte Chemie, 2017, 129, 2544-2548.	2.0	0
100	Integrated process design for biocatalytic synthesis by a Leloir Glycosyltransferase: UDPâ€glucose production with sucrose synthase. Biotechnology and Bioengineering, 2017, 114, 924-928.	3.3	43
101	Multivalency Effects on the Immobilization of Sucrose Phosphorylase in Flow Microchannels and Their Use in the Development of a Highâ€Performance Biocatalytic Microreactor. ChemCatChem, 2017, 9, 161-166.	3.7	35
102	Toward "homolactic―fermentation of glucose and xylose by engineered <i>Saccharomyces cerevisiae</i> harboring a kinetically efficient <scp>l</scp> â€lactate dehydrogenase within <i>pdc1</i> â€ <i>pdc5</i> deletion background. Biotechnology and Bioengineering, 2017, 114, 163-171.	3.3	16
103	Saccharomyces cerevisiae strain comparison in glucose–xylose fermentations on defined substrates and in high-gravity SSCF: convergence in strain performance despite differences in genetic and evolutionary engineering history. Biotechnology for Biofuels, 2017, 10, 205.	6.2	13
104	CorNet: Assigning function to networks of co-evolving residues by automated literature mining. PLoS ONE, 2017, 12, e0176427.	2.5	12
105	The micromorphology of Trichoderma reesei analyzed in cultivations on lactose and solid lignocellulosic substrate, and its relationship with cellulase production. Biotechnology for Biofuels, 2016, 9, 169.	6.2	15
106	Development of a fully integrated falling film microreactor for gas–liquid–solid biotransformation with surface immobilized O ₂ â€dependent enzyme. Biotechnology and Bioengineering, 2016, 113, 1862-1872.	3.3	25
107	Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76C1. Journal of Biotechnology, 2016, 233, 49-55.	3.8	43
108	Let the substrate flow, not the enzyme: Practical immobilization of <scp>d</scp> â€amino acid oxidase in a glass microreactor for effective biocatalytic conversions. Biotechnology and Bioengineering, 2016, 113, 2342-2349.	3.3	33

#	Article	IF	CITATIONS
109	β yclodextrin Improves Solubility and Enzymatic <i>C</i> â€Glucosylation of the Flavonoid Phloretin. Advanced Synthesis and Catalysis, 2016, 358, 486-493.	4.3	27
110	A Kinaseâ€Independent Oneâ€Pot Multienzyme Cascade for an Expedient Synthesis of Guanosine 5′â€Điphosphoâ€ <scp>d</scp> â€mannose. Advanced Synthesis and Catalysis, 2016, 358, 3809-3816.	4.3	16
111	Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris. Journal of Biotechnology, 2016, 235, 54-60.	3.8	9
112	Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. Journal of Biotechnology, 2016, 235, 61-83.	3.8	91
113	Two N-terminally truncated variants of human β-galactoside α2,6 sialyltransferase I with distinct properties for inÂvitro protein glycosylation. Glycobiology, 2016, 26, 1097-1106.	2.5	7
114	Downstream Processing of Nucleosideâ€Diphosphoâ€Sugars from Sucrose Synthase Reaction Mixtures at Decreased Solvent Consumption. Advanced Synthesis and Catalysis, 2016, 358, 3113-3122.	4.3	17
115	Confocal Luminescence Lifetime Imaging with Variable Scan Velocity and Its Application to Oxygen Sensing. Analytical Chemistry, 2016, 88, 10736-10743.	6.5	11
116	Special Issue on acib, dedicated to the occasion of Prof. Dr. Helmut Schwab's 65th birthday. Journal of Biotechnology, 2016, 235, 1-2.	3.8	0
117	Functional characterization of the native swollenin from Trichoderma reesei: study of its possible role as C1 factor of enzymatic lignocellulose conversion. Biotechnology for Biofuels, 2016, 9, 178.	6.2	51
118	Unlocking the Potential of Leloir Glycosyltransferases for Applied Biocatalysis: Efficient Synthesis of Uridine 5′â€Điphosphateâ€Glucose by Sucrose Synthase. Advanced Synthesis and Catalysis, 2016, 358, 3600-3609.	4.3	41
119	Intensifying the O2-dependent heterogeneous biocatalysis: Superoxygenation of solid support from H2O2 by a catalase tailor-made for effective immobilization. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 302-309.	1.8	25
120	Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis. Scientific Reports, 2016, 6, 32451.	3.3	7
121	Kinetic Analysis and Probing with Substrate Analogues of the Reaction Pathway of the Nitrile Reductase QueF from Escherichia coli. Journal of Biological Chemistry, 2016, 291, 25411-25426.	3.4	7
122	Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution. Biotechnology for Biofuels, 2016, 9, 56.	6.2	20
123	Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catalysis Today, 2016, 259, 66-80.	4.4	152
124	Enhanced Synthesis of 2- <i>O</i> -α- <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -ascorbic Acid from α-Cyclodextrin by a Highly Disproportionating CGTase. ACS Catalysis, 2016, 6, 1606-1615.	11.2	25
125	Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnology Advances, 2016, 34, 88-111.	11.7	141
126	Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses. Bioresource Technology, 2016, 200, 287-296.	9.6	38

#	Article	IF	CITATIONS
127	Diastereoselective Synthesis of Glycosyl Phosphates by Using a Phosphorylase-Phosphatase Combination Catalyst. Angewandte Chemie - International Edition, 2015, 54, 15867-15871.	13.8	18
128	Interplay of catalytic subsite residues in the positioning of α-d-glucose 1-phosphate in sucrose phosphorylase. Biochemistry and Biophysics Reports, 2015, 2, 36-44.	1.3	2
129	Creating a Waterâ€Soluble Resveratrolâ€Based Antioxidant by Siteâ€Selective Enzymatic Glucosylation. ChemBioChem, 2015, 16, 1870-1874.	2.6	68
130	Speeding up the product release: a secondâ€sphere contribution from Tyr191 to the reactivity of <scp>lâ€</scp> lactate oxidase revealed in crystallographic and kinetic studies of siteâ€directed variants. FEBS Journal, 2015, 282, 4130-4140.	4.7	11
131	Protein freeze concentration and micro-segregation analysed in a temperature-controlled freeze container. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 108-111.	4.4	21
132	Tunable Semicrystalline Thin Film Cellulose Substrate for High-Resolution, <i>In-Situ</i> AFM Characterization of Enzymatic Cellulose Degradation. ACS Applied Materials & Interfaces, 2015, 7, 27900-27909.	8.0	16
133	Complete switch from α-2,3- to α-2,6-regioselectivity in Pasteurella dagmatis β- <scp>d</scp> -galactoside sialyltransferase by active-site redesign. Chemical Communications, 2015, 51, 3083-3086.	4.1	41
134	All-in-one assay for β-d-galactoside sialyltransferases: Quantification of productive turnover, error hydrolysis, and site selectivity. Analytical Biochemistry, 2015, 483, 47-53.	2.4	9
135	Phosphoryl Transfer from α- <scp>d</scp> -Glucose 1-Phosphate Catalyzed by Escherichia coli Sugar-Phosphate Phosphatases of Two Protein Superfamily Types. Applied and Environmental Microbiology, 2015, 81, 1559-1572.	3.1	12
136	From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production. Biotechnology for Biofuels, 2015, 8, 46.	6.2	41
137	Design of experiments reveals critical parameters for pilotâ€scale freezeâ€andâ€thaw processing of <scp>L</scp> â€lactic dehydrogenase. Biotechnology Journal, 2015, 10, 1390-1399.	3.5	15
138	Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts. Biotechnology for Biofuels, 2015, 8, 157.	6.2	10
139	The Ala95â€toâ€Gly substitution in <i>AerococcusÂviridans</i> <scp>l</scp> â€lactate oxidase revisited–Âstructural consequences at the catalytic site and effect on reactivity with O ₂ and other electron acceptors. FEBS Journal, 2015, 282, 562-578.	4.7	13
140	Saturation transfer difference NMR to study substrate and product binding to human UDP-xylose synthase (hUXS1A) during catalytic event. RSC Advances, 2015, 5, 86919-86926.	3.6	2
141	Comparison of broad-scope assays of nucleotide sugar-dependent glycosyltransferases. Analytical Biochemistry, 2015, 490, 46-51.	2.4	6
142	Mesoporous Silica Materials Labeled for Optical Oxygen Sensing and Their Application to Development of a Silica-Supported Oxidoreductase Biocatalyst. ACS Catalysis, 2015, 5, 5984-5993.	11.2	46
143	Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism. Journal of Biological Chemistry, 2015, 290, 18770-18781.	3.4	83
144	Probing of the reaction pathway of human UDP-xylose synthase with site-directed mutagenesis. Carbohydrate Research, 2015, 416, 1-6.	2.3	2

#	Article	IF	CITATIONS
145	Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions. Biotechnology Advances, 2015, 33, 1641-1652.	11.7	63
146	Dissecting Physical and Biochemical Factors of Catalytic Effectiveness in Immobilized <scp>D</scp> â€Amino Acid Oxidase by Realâ€Time Sensing of O ₂ Availability Inside Porous Carriers. ChemCatChem, 2014, 6, 981-986.	3.7	19
147	Yihx-encoded haloacid dehalogenase-like phosphatase HAD4 from Escherichia coli is a specific α-d-glucose 1-phosphate hydrolase useful for substrate-selective sugar phosphate transformations. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 39-46.	1.8	12
148	Dissecting the effect of chemical additives on the enzymatic hydrolysis of pretreated wheat straw. Bioresource Technology, 2014, 169, 713-722.	9.6	33
149	Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies. FEBS Journal, 2014, 281, 275-290.	4.7	33
150	Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency. Journal of Biological Chemistry, 2014, 289, 35929-35938.	3.4	234
151	Convenient microtiter plateâ€based, oxygenâ€independent activity assays for flavinâ€dependent oxidoreductases based on different redox dyes. Biotechnology Journal, 2014, 9, 474-482.	3.5	21
152	Tunable mixed amorphous–crystalline cellulose substrates (MACS) for dynamic degradation studies by atomic force microscopy in liquid environments. Cellulose, 2014, 21, 3927-3939.	4.9	7
153	High-quality production of human α-2,6-sialyltransferase in Pichia pastoris requires control over N-terminal truncations by host-inherent protease activities. Microbial Cell Factories, 2014, 13, 138.	4.0	9
154	Mannitol metabolism in brown algae involves a new phosphatase family. Journal of Experimental Botany, 2014, 65, 559-570.	4.8	67
155	Characterization of a Laboratory-Scale Container for Freezing Protein Solutions with Detailed Evaluation of a Freezing Process Simulation. Journal of Pharmaceutical Sciences, 2014, 103, 417-426.	3.3	24
156	Chiral resolution through stereoselective transglycosylation by sucrose phosphorylase: application to the synthesis of a new biomimetic compatible solute, (R)-2-O-α-d-glucopyranosyl glyceric acid amide. Chemical Communications, 2014, 50, 436-438.	4.1	14
157	A two-step O- to C-glycosidic bond rearrangement using complementary glycosyltransferase activities. Chemical Communications, 2014, 50, 5465-5468.	4.1	37
158	Mechanistic study of CMP-Neu5Ac hydrolysis by α2,3-sialyltransferase fromPasteurella dagmatis. FEBS Letters, 2014, 588, 2978-2984.	2.8	17
159	In Situ Protein Secondary Structure Determination in Ice: Raman Spectroscopy-Based Process Analytical Tool for Frozen Storage of Biopharmaceuticals. Journal of Pharmaceutical Sciences, 2014, 103, 2287-2295.	3.3	20
160	Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions. Green Chemistry, 2014, 16, 4417-4425.	9.0	52
161	Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 2014, 13, 37.	4.0	17
162	Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 2014, 7, 49.	6.2	33

#	Article	IF	CITATIONS
163	Enzymatic Redox Cascade for Oneâ€Pot Synthesis of Uridine 5′â€Diphosphate Xylose from Uridine 5′â€Diphosphate Glucose. Advanced Synthesis and Catalysis, 2014, 356, 3575-3584.	4.3	30
164	Quantitating intraparticle O ₂ gradients in solid supported enzyme immobilizates: Experimental determination of their role in limiting the catalytic effectiveness of immobilized glucose oxidase. Biotechnology and Bioengineering, 2013, 110, 2086-2095.	3.3	35
165	Multiphase biotransformations in microstructured reactors: opportunities for biocatalytic process intensification and smart flow processing. Green Processing and Synthesis, 2013, 2, 541-559.	3.4	43
166	Targeting the Substrate Binding Site of <i>E.â€coli</i> Nitrile Reductase QueF by Modeling, Substrate and Enzyme Engineering. Chemistry - A European Journal, 2013, 19, 7007-7012.	3.3	23
167	Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae. Bioresource Technology, 2013, 130, 439-448.	9.6	29
168	Shine a light on immobilized enzymes: real-time sensing in solid supported biocatalysts. Trends in Biotechnology, 2013, 31, 194-203.	9.3	51
169	Visualizing cellulase activity. Biotechnology and Bioengineering, 2013, 110, 1529-1549.	3.3	50
170	Scaleâ€up and intensification of (<i>S</i>)â€1â€{2â€chlorophenyl)ethanol bioproduction: Economic evaluation of whole cellâ€catalyzed reduction of <i>o</i> â€Chloroacetophenone. Biotechnology and Bioengineering, 2013, 110, 2311-2315.	3.3	18
171	Harnessing <i>Candida tenuis</i> and <i>Pichia stipitis</i> in wholeâ€cell bioreductions of <i>o</i> â€chloroacetophenone: Stereoselectivity, cell activity, in situ substrate supply and product removal. Biotechnology Journal, 2013, 8, 699-708.	3.5	8
172	Real-time measurement and modeling of intraparticle pH gradient formation in immobilized cephalosporin C amidase. Process Biochemistry, 2013, 48, 593-604.	3.7	12
173	Renewal of the Air–Water Interface as a Critical System Parameter of Protein Stability: Aggregation of the Human Growth Hormone and Its Prevention by Surface-Active Compounds. Langmuir, 2013, 29, 15240-15250.	3.5	72
174	Enzymatic <i>C</i> -glycosylation: Insights from the study of a complementary pair of plant <i>O</i> - and <i>C</i> -glucosyltransferases. Pure and Applied Chemistry, 2013, 85, 1865-1877.	1.9	21
175	Characterization of a multifunctional $\hat{l}\pm 2$,3-sialyltransferase from Pasteurella dagmatis. Glycobiology, 2013, 23, 1293-1304.	2.5	29
176	Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the <i>C</i> â€Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea. Advanced Synthesis and Catalysis, 2013, 355, 2757-2763.	4.3	93
177	Structure Based Descriptors for the Estimation of Colloidal Interactions and Protein Aggregation Propensities. PLoS ONE, 2013, 8, e59797.	2.5	11
178	Probing enzyme–substrate interactions at the catalytic subsite ofLeuconostoc mesenteroidessucrose phosphorylase with site-directed mutagenesis: the roles of Asp49and Arg395. Biocatalysis and Biotransformation, 2012, 30, 326-337.	2.0	6
179	Dynamic Mechanism of Proton Transfer in Mannitol 2-Dehydrogenase from Pseudomonas fluorescens. Journal of Biological Chemistry, 2012, 287, 6655-6667.	3.4	6
180	Structure and Mechanism of Human UDP-xylose Synthase. Journal of Biological Chemistry, 2012, 287, 31349-31358.	3.4	36

#	Article	IF	CITATIONS
181	Dissecting and Reconstructing Synergism. Journal of Biological Chemistry, 2012, 287, 43215-43222.	3.4	61
182	Structural and Kinetic Evidence That Catalytic Reaction of Human UDP-glucose 6-Dehydrogenase Involves Covalent Thiohemiacetal and Thioester Enzyme Intermediates. Journal of Biological Chemistry, 2012, 287, 2119-2129.	3.4	27
183	Nutritional requirements of the BY series of <i>Saccharomyces cerevisiae</i> strains for optimum growth. FEMS Yeast Research, 2012, 12, 796-808.	2.3	96
184	Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Journal of Biotechnology, 2012, 158, 192-202.	3.8	41
185	Switching between <i>O</i> ―and <i>C</i> â€Glycosyltransferase through Exchange of Activeâ€Site Motifs. Angewandte Chemie - International Edition, 2012, 51, 12879-12883.	13.8	69
186	Positively Charged Mini-Protein Z _{basic2} As a Highly Efficient Silica Binding Module: Opportunities for Enzyme Immobilization on Unmodified Silica Supports. Langmuir, 2012, 28, 10040-10049.	3.5	74
187	Dual-lifetime referencing (DLR): a powerful method for on-line measurement of internal pH in carrier-bound immobilized biocatalysts. BMC Biotechnology, 2012, 12, 11.	3.3	36
188	Engineering of Aerococcus viridans <scp>l</scp> -Lactate Oxidase for Site-Specific PEGylation: Characterization and Selective Bioorthogonal Modification of a S218C Mutant. Bioconjugate Chemistry, 2012, 23, 1406-1414.	3.6	20
189	Comparison of <i>Scheffersomyces stipitis</i> strains CBS 5773 and CBS 6054 with regard to their xylose metabolism: implications for xylose fermentation. MicrobiologyOpen, 2012, 1, 64-70.	3.0	20
190	Nonâ€native aggregation of recombinant human granulocyte olony stimulating factor under simulated process stress conditions. Biotechnology Journal, 2012, 7, 1014-1024.	3.5	9
191	Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module <i>Z</i> _{basic2} : Design of a heterogeneous <scp>D</scp> â€amino acid oxidase catalyst on porous glass. Biotechnology and Bioengineering, 2012, 109, 1490-1498.	3.3	52
192	<scp><i>Candida tenuis</i></scp> Xylose Reductase Catalyzed Reduction of Aryl Ketones for Enantioselective Synthesis of Active Oxetine Derivatives. Chirality, 2012, 24, 847-853.	2.6	6
193	Cellulases Dig Deep. Journal of Biological Chemistry, 2012, 287, 2759-2765.	3.4	52
194	Catalytic mechanism of human UDP-glucose 6-dehydrogenase: in situ proton NMR studies reveal that the C-5 hydrogen of UDP-glucose is not exchanged with bulk water during the enzymatic reaction. Carbohydrate Research, 2012, 356, 209-214.	2.3	7
195	Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using d-glucal as donor substrate. Carbohydrate Research, 2012, 356, 224-232.	2.3	7
196	Bioprocess design guided by in situ substrate supply and product removal: Process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol. Bioresource Technology, 2012, 108, 216-223.	9.6	29
197	Glycosides as compatible solutes: biosynthesis and applications. Natural Product Reports, 2011, 28, 875.	10.3	28
198	d-Xylulose kinase from Saccharomyces cerevisiae: Isolation and characterization of the highly unstable enzyme, recombinantly produced in Escherichia coli. Protein Expression and Purification, 2011, 79, 223-230.	1.3	12

#	Article	IF	CITATIONS
199	Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Organic and Biomolecular Chemistry, 2011, 9, 5863.	2.8	21
200	Enzymes of mannitol metabolism in the human pathogenic fungus <i>Aspergillus fumigatus</i> – kine properties of mannitolâ€1â€phosphate 5â€dehydrogenase and mannitol 2â€dehydrogenase, and their physiological implications. FEBS Journal, 2011, 278, 1264-1276.	etic 4.7	10
201	Biotransformations in microstructured reactors: more than flowing with the stream?. Trends in Biotechnology, 2011, 29, 333-342.	9.3	135
202	Aromatic interactions at the catalytic subsite of sucrose phosphorylase: Their roles in enzymatic glucosyl transfer probed with Phe ⁵² → Ala and Phe ⁵² → Asn mutants. FEBS Letters, 2011, 585, 499-504.	2.8	15
203	Oriented Immobilization of Enzymes Made Fit for Applied Biocatalysis: Nonâ€Covalent Attachment to Anionic Supports using <i>Z</i> _{basic2} Module. ChemCatChem, 2011, 3, 1299-1303.	3.7	42
204	Inside Cover: Oriented Immobilization of Enzymes Made Fit for Applied Biocatalysis: Non-Covalent Attachment to Anionic Supports usingZbasic2Module (ChemCatChem 8/2011). ChemCatChem, 2011, 3, 1218-1218.	3.7	3
205	Enzyme identification and development of a wholeâ€cell biotransformation for asymmetric reduction of <i>o</i> â€chloroacetophenone. Biotechnology and Bioengineering, 2011, 108, 797-803.	3.3	23
206	Structure and Mechanism of Human UDP-glucose 6-Dehydrogenase. Journal of Biological Chemistry, 2011, 286, 23877-23887.	3.4	58
207	Glucosylglycerol and glucosylglycerate as enzyme stabilizers. Biotechnology Journal, 2010, 5, 187-191.	3.5	56
208	Carbohydrate synthesis by disaccharide phosphorylases: Reactions, catalytic mechanisms and application in the glycosciences. Biotechnology Journal, 2010, 5, 1324-1338.	3.5	85
209	Carrier-free immobilized enzymes for biocatalysis. Biotechnology Letters, 2010, 32, 341-350.	2.2	104
210	Substitution of the catalytic acid–base Glu237 by Gln suppresses hydrolysis during glucosylation of phenolic acceptors catalyzed by Leuconostoc mesenteroides sucrose phosphorylase. Journal of Molecular Catalysis B: Enzymatic, 2010, 65, 24-29.	1.8	8
211	Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microbial Cell Factories, 2010, 9, 16.	4.0	67
212	Enzyme Catalytic Promiscuity: The Nonheme Fe ²⁺ Center of βâ€Diketoneâ€Cleaving Dioxygenase Dke1 Promotes Hydrolysis of Activated Esters. ChemBioChem, 2010, 11, 502-505.	2.6	14
213	Intraparticle concentration gradients for substrate and acidic product in immobilized cephalosporin C amidase and their dependencies on carrier characteristics and reaction parameters. Biotechnology and Bioengineering, 2010, 106, 528-540.	3.3	45
214	Small-molecule glucosylation by sucrose phosphorylase: structure–activity relationships for acceptor substrates revisited. Carbohydrate Research, 2010, 345, 1492-1496.	2.3	16
215	Regioselective O-glucosylation by sucrose phosphorylase: a promising route for functional diversification of a range of 1,2-propanediols. Carbohydrate Research, 2010, 345, 1736-1740.	2.3	17
216	UDP-glucose dehydrogenase: structure and function of a potential drug target. Biochemical Society Transactions, 2010, 38, 1378-1385.	3.4	58

#	Article	IF	CITATIONS
217	Limitations in Xylose-Fermenting <i>Saccharomyces cerevisiae</i> , Made Evident through Comprehensive Metabolite Profiling and Thermodynamic Analysis. Applied and Environmental Microbiology, 2010, 76, 7566-7574.	3.1	53
218	From Alcohol Dehydrogenase to a "One-way―Carbonyl Reductase by Active-site Redesign. Journal of Biological Chemistry, 2010, 285, 30644-30653.	3.4	5
219	Sucrose phosphorylase: a powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals. Biocatalysis and Biotransformation, 2010, 28, 10-21.	2.0	64
220	Polyol-specific long-chain dehydrogenases/reductases of mannitol metabolism in Aspergillus fumigatus: Biochemical characterization and pH studies of mannitol 2-dehydrogenase and mannitol-1-phosphate 5-dehydrogenase. Chemico-Biological Interactions, 2009, 178, 274-282.	4.0	10
221	Sucrose Phosphorylase Harbouring a Redesigned, Glycosyltransferaseâ€Like Active Site Exhibits Retaining Glucosyl Transfer in the Absence of a Covalent Intermediate. ChemBioChem, 2009, 10, 2333-2337.	2.6	30
222	Enzymatic synthesis of βâ€glucosylglycerol using a continuousâ€flow microreactor containing thermostable βâ€glycoside hydrolase CelB immobilized on coated microchannel walls. Biotechnology and Bioengineering, 2009, 103, 865-872.	3.3	41
223	Functional characterization of an orphan cupin protein from <i>Burkholderia xenovorans</i> reveals a mononuclear nonheme Fe ²⁺ â€dependent oxygenase that cleaves βâ€diketones. FEBS Journal, 2009, 276, 5983-5997.	4.7	10
224	Coatedâ€wall microreactor for continuous biocatalytic transformations using immobilized enzymes. Biotechnology Journal, 2009, 4, 98-107.	3.5	52
225	Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2009, 4, 684-694.	3.5	35
226	Single-step enzymatic synthesis of (R)-2-O-α-d-glucopyranosyl glycerate, a compatible solute from micro-organisms that functions as a protein stabiliser. Organic and Biomolecular Chemistry, 2009, 7, 4267.	2.8	38
227	The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by <i>Candida tenuis</i> xylose reductase reveals plasticity in an aldo-keto reductase active site. Biochemical Journal, 2009, 421, 43-49.	3.7	8
228	Studying non-covalent enzyme carbohydrate interactions by STD NMR. Carbohydrate Research, 2008, 343, 2153-2161.	2.3	10
229	Characterization of recombinant Aspergillus fumigatus mannitol-1-phosphate 5-dehydrogenase and its application for the stereoselective synthesis of protio and deuterio forms of d-mannitol 1-phosphate. Carbohydrate Research, 2008, 343, 1414-1423.	2.3	16
230	The stabilizing effects of immobilization in D-amino acid oxidase from Trigonopsis variabilis. BMC Biotechnology, 2008, 8, 72.	3.3	27
231	Encapsulation of <i>Trigonopsis variabilis </i> <scp>D</scp> â€amino acid oxidase and fast comparison of the operational stabilities of free and immobilized preparations of the enzyme. Biotechnology and Bioengineering, 2008, 99, 251-260.	3.3	42
232	Integration of enzyme, strain and reaction engineering to overcome limitations of baker's yeast in the asymmetric reduction of αâ€keto esters. Biotechnology and Bioengineering, 2008, 101, 1094-1101.	3.3	19
233	A Highâ€Yielding Biocatalytic Process for the Production of 2â€ <i>O</i> â€{l±â€ <scp>D</scp> â€glucopyranosyl)â€ <i>sn</i> â€glycerol, a Natural Osmolyte and Useful Moisturizing Ingredient. Angewandte Chemie - International Edition, 2008, 47, 10086-10089.	13.8	104
234	Novel Chemoâ€Enzymatic Mimic of Hydrogen Peroxideâ€Forming NAD(P)H Oxidase for Efficient Regeneration of NAD ⁺ and NADP ⁺ . Advanced Synthesis and Catalysis, 2008, 350, 2305-2312.	4.3	20

#	Article	IF	CITATIONS
235	Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and α,α-trehalose phosphorylase. Carbohydrate Research, 2008, 343, 2032-2040.	2.3	31
236	Structureâ€guided engineering of the coenzyme specificity of <i>Pseudomonas fluorescens</i> mannitol 2â€dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). FEBS Letters, 2008, 582, 233-237.	2.8	21
237	Tyrâ€51 is the proton donor–acceptor for NAD(H)â€dependent interconversion of xylose and xylitol by <i>Candida tenuis</i> xylose reductase (AKR2B5). FEBS Letters, 2008, 582, 4095-4099.	2.8	7
238	Whole-cell bioreduction of aromatic α-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli. Microbial Cell Factories, 2008, 7, 37.	4.0	46
239	Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microbial Cell Factories, 2008, 7, 9.	4.0	130
240	The phosphate site of trehalose phosphorylase from Schizophyllum commune probed by site-directed mutagenesis and chemical rescue studies. FEBS Journal, 2008, 275, 903-913.	4.7	9
241	Structural and functional comparison of 2-His- 1-carboxylate and 3-His metallocentres in non-haem iron(II)-dependent enzymes. Biochemical Society Transactions, 2008, 36, 1180-1186.	3.4	32
242	Role of Phe-114 in substrate specificity ofCandida tenuisxylose reductase (AKR2B5). Biocatalysis and Biotransformation, 2007, 25, 194-201.	2.0	2
243	Trigonopsis variabilis d-Amino Acid Oxidase: Control of Protein Quality and Opportunities for Biocatalysis through Production in Escherichia coli. Applied and Environmental Microbiology, 2007, 73, 331-333.	3.1	24
244	Acid–base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237→Gln mutant enzymes. Biochemical Journal, 2007, 403, 441-449.	3.7	33
245	Structural and Kinetic Studies of Induced Fit in Xylulose Kinase from Escherichia coli. Journal of Molecular Biology, 2007, 365, 783-798.	4.2	37
246	The role of Asp-295 in the catalytic mechanism ofLeuconostoc mesenteroidessucrose phosphorylase probed with site-directed mutagenesis. FEBS Letters, 2007, 581, 1403-1408.	2.8	26
247	Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase. FEBS Letters, 2007, 581, 3814-3818.	2.8	12
248	Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: Characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of α-d-glucose 1-phosphate. Journal of Biotechnology, 2007, 129, 77-86.	3.8	94
249	Entrapment in E. coli improves the operational stability of recombinant β-glycosidase CelB from Pyrococcus furiosus and facilitates biocatalyst recovery. Journal of Biotechnology, 2007, 129, 69-76.	3.8	9
250	Trehalose phosphorylase from Pleurotus ostreatus: Characterization and stabilization by covalent modification, and application for the synthesis of α,α-trehalose. Journal of Biotechnology, 2007, 129, 140-150.	3.8	26
251	Selective modification of surface-exposed thiol groups inTrigonopsis variabilisD-amino acid oxidase using poly(ethylene glycol) maleimide and its effect on activity and stability of the enzyme. Biotechnology and Bioengineering, 2007, 96, 9-17.	3.3	16
252	Fusion to a pull-down domain: a novel approach of producingTrigonopsis variabilisD-amino acid oxidase as insoluble enzyme aggregates. Biotechnology and Bioengineering, 2007, 97, 454-461.	3.3	100

#	Article	IF	CITATIONS
253	Probing the active site of <i>Corynebacterium callunae</i> starch phosphorylase through the characterization of wildâ€ŧype and His334→Gly mutant enzymes. FEBS Journal, 2007, 274, 5105-5115.	4.7	7
254	Study of the thermal stability of D-amino acid oxidase fromTrigonopsis variabilisreveals enzyme inactivation via multiple steps. Biocatalysis and Biotransformation, 2006, 24, 426-436.	2.0	5
255	Asp-196 → Ala mutant ofLeuconostoc mesenteroidessucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate. FEBS Letters, 2006, 580, 3905-3910.	2.8	33
256	Induction of aldose reductase and xylitol dehydrogenase activities in Candida tenuis CBS 4435. FEMS Microbiology Letters, 2006, 149, 31-37.	1.8	30
257	NMR study of 13C-kinetic isotope effects at 13C natural abundance to characterize oxidations and an enzyme-catalyzed reduction. Tetrahedron Letters, 2006, 47, 4045-4049.	1.4	8
258	Exploring the cupin-type metal-coordinating signature of acetylacetone dioxygenase Dke1 with site-directed mutagenesis: Catalytic reaction profile and Fe2+ binding stability of Glu-69→Gln mutant. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 171-178.	1.8	15
259	Saturation–transfer–difference NMR to characterize substrate binding recognition and catalysis of two broadly specific glycoside hydrolases. Journal of Molecular Catalysis B: Enzymatic, 2006, 42, 85-89.	1.8	15
260	Thermal inactivation ofD-amino acid oxidase fromTrigonopsis variabilis occurs via three parallel paths of irreversible denaturation. Biotechnology and Bioengineering, 2006, 94, 645-654.	3.3	29
261	Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable β-glycosylhydrolase CelB fromPyrococcus Furiosus. Biotechnology and Bioengineering, 2006, 95, 1093-1100.	3.3	62
262	Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis. Biochemical Journal, 2006, 393, 51-58.	3.7	36
263	Reaction of Trigonopsis variabilis d-amino acid oxidase with 2,6-dichloroindophenol: kinetic characterisation and development of an oxygen-independent assay of the enzyme activity. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 271-278.	1.8	17
264	Integrated approach for production of recombinant acetylacetone dioxygenase fromAcinetobacter johnsonii. Biocatalysis and Biotransformation, 2005, 23, 261-269.	2.0	10
265	Engineering Candida tenuis Xylose Reductase for Improved Utilization of NADH: Antagonistic Effects of Multiple Side Chain Replacements and Performance of Site-Directed Mutants under Simulated In Vivo Conditions. Applied and Environmental Microbiology, 2005, 71, 6390-6393.	3.1	40
266	Single-Site Oxidation, Cysteine 108 to Cysteine Sulfinic Acid, in d -Amino Acid Oxidase from Trigonopsis variabilis and Its Structural and Functional Consequences. Applied and Environmental Microbiology, 2005, 71, 8061-8068.	3.1	44
267	Reaction Coordinate Analysis for β-Diketone Cleavage by the Non-Heme Fe2+-Dependent Dioxygenase Dke1. Journal of the American Chemical Society, 2005, 127, 12306-12314.	13.7	76
268	Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274 → Arg mutant ofCandida tenuisxylose reductase (AKR2B5) bound to NAD+and NADP+. FEBS Letters, 2005, 579, 763-767.	2.8	33
269	Relationships between structure, function and stability for pyridoxal 5′-phosphate-dependent starch phosphorylase from Corynebacterium callunae as revealed by reversible cofactor dissociation studies. FEBS Journal, 2004, 271, 3319-3329.	0.2	9
270	Cellobiose phosphorylase from Cellulomonas uda: gene cloning and expression in Escherichia coli, and application of the recombinant enzyme in a †̃glycosynthase-type' reaction. Journal of Molecular Catalysis B: Enzymatic, 2004, 29, 241-248.	1.8	31

#	Article	IF	CITATIONS
271	Electronic Substituent Effects on the Cleavage Specificity of a Non-Heme Fe2+-Dependent β-Diketone Dioxygenase and Their Mechanistic Implications. Journal of the American Chemical Society, 2004, 126, 12202-12203.	13.7	55
272	Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli. Chemico-Biological Interactions, 2003, 143-144, 533-542.	4.0	25
273	Tracking interactions that stabilize the dimer structure of starch phosphorylase from Corynebacterium callunae. FEBS Journal, 2003, 270, 2126-2136.	0.2	10
274	Multiple Forms of Xylose Reductase inCandida intermedia:Â Comparison of Their Functional Properties Using Quantitative Structureâ^'Activity Relationships, Steady-State Kinetic Analysis, and pH Studies. Journal of Agricultural and Food Chemistry, 2003, 51, 7930-7935.	5.2	23
275	Xylose Reductase from the Basidiomycete Fungus Cryptococcus flavus: Purification, Steady-State Kinetic Characterization, and Detailed Analysis of the Substrate Binding Pocket Using Structure-Activity Relationships. Journal of Biochemistry, 2003, 133, 553-562.	1.7	9
276	Mutagenesis of the Dimer Interface Region of Corynebacterium callunae Starch Phosphorylase Perturbs the Phosphate-Dependent Conformational Relay that Enhances Oligomeric Stability of the Enzyme. Journal of Biochemistry, 2003, 134, 599-606.	1.7	5
277	Crystal Structure of Pseudomonas fluorescens Mannitol 2-Dehydrogenase Binary and Ternary Complexes. Journal of Biological Chemistry, 2002, 277, 43433-43442.	3.4	37
278	Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable ?-glycosidases and optimization of a packed-bed reactor for lactose conversion. Biotechnology and Bioengineering, 2002, 77, 619-631.	3.3	39
279	Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types. FEBS Letters, 2001, 500, 149-152.	2.8	19
280	Oxyanion-Mediated Protein Stabilization: Differential Roles of Phosphate for Preventing Inactivation of Bacterial α-Glucan Phosphorylases. Biocatalysis and Biotransformation, 2001, 19, 379-398.	2.0	3
281	Galactosyl Transfer Catalyzed by Thermostable Â-Glycosidases from Sulfolobus solfataricus and Pyrococcus furiosus: Kinetic Studies of the Reactions of Galactosylated Enzyme Intermediates with a Range of Nucleophiles. Journal of Biochemistry, 2001, 130, 341-349.	1.7	12
282	Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme and Microbial Technology, 2001, 29, 434-440.	3.2	55
283	Enzymatic redox isomerization of 1,6-disaccharides by pyranose oxidase and NADH-dependent aldose reductase. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 407-414.	1.8	16
284	Role of non-covalent enzyme–substrate interactions in the reaction catalysed by cellobiose phosphorylase from Cellulomonas uda. Biochemical Journal, 2000, 351, 649-659.	3.7	48
285	Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases. , 2000, 69, 140-149.		61
286	Transgalactosylation by thermostable β-glycosidases from Pyrococcus furiosus and Sulfolobus solfataricus. FEBS Journal, 2000, 267, 5055-5066.	0.2	50
287	Synthesis of 5,6-dimodified open-chain d-fructose derivatives and their properties as substrates of bacterial polyol dehydrogenase. Tetrahedron: Asymmetry, 2000, 11, 607-620.	1.8	13
288	d-Xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. Biomedical Applications, 2000, 737, 195-202.	1.7	44

#	Article	IF	CITATIONS
289	Thermal denaturation pathway of starch phosphorylase from <i>Corynebacterium callunae</i> : Oxyanion binding provides the glue that efficiently stabilizes the dimer structure of the protein. Protein Science, 2000, 9, 1149-1161.	7.6	16
290	Characterization of dTDP-4-dehydrorhamnose 3,5-Epimerase and dTDP-4-dehydrorhamnose Reductase, Required for dTDP-l-rhamnose Biosynthesis in Salmonella enterica Serovar Typhimurium LT2. Journal of Biological Chemistry, 1999, 274, 25069-25077.	3.4	111
291	Binding and catalysis by yeast aldose reductase: A substrate-analog approach with new aldose derivatives. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1683-1686.	2.2	8
292	Continuous production of α,α-trehalose by immobilised fungal trehalose phosphorylase. Biotechnology Letters, 1999, 13, 243-248.	0.5	4
293	Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. I. The properties of two thermostable ?-glycosidases. , 1999, 64, 322-332.		70
294	A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase. Journal of Microbiological Methods, 1999, 35, 253-259.	1.6	79
295	Endo-β-1,4-d-mannanase is efficiently produced by Sclerotium (Athelia) rolfsii under derepressed conditions. Journal of Biotechnology, 1999, 67, 189-203.	3.8	26
296	Characterization of trehalose phosphorylase from Schizophyllum commune. Biochemical Journal, 1999, 341, 385-393.	3.7	79
297	A Convenient Enzymatic Procedure for the Production of Aldose-Free d-Tagatosea. Annals of the New York Academy of Sciences, 1998, 864, 295-299.	3.8	32
298	Strategies to an Efficient Enzymatic Production of Xylitol. Annals of the New York Academy of Sciences, 1998, 864, 442-445.	3.8	5
299	Process Stability of Glucose-Fructose Oxidoreductase from Zymomonas mobilis: Role of Reactive Thiols Probed by Chemical Modification. Annals of the New York Academy of Sciences, 1998, 864, 446-449.	3.8	2
300	Enzymatic Synthesis of Mannitol: Reaction Engineering for a Recombinant Mannitol Dehydrogenase. Annals of the New York Academy of Sciences, 1998, 864, 450-453.	3.8	10
301	Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose-fermenting yeast Candida tenuis. Journal of Bioscience and Bioengineering, 1998, 85, 196-202.	0.9	18
302	A multistep process is responsible for product-induced inactivation of glucose-fructose oxidoreductase from Zymomonas mobilis. FEBS Journal, 1998, 251, 955-963.	0.2	15
303	A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. , 1998, 60, 277-282.		43
304	The stereochemical course of the reaction mechanism of trehalose phosphorylase from Schizophyllum commune. FEBS Letters, 1998, 440, 440-443.	2.8	24
305	Enzymatic Regeneration of NAD in Enantioselective Oxidation of Secondary Alcohols: Glutamate Dehydrogenase Versus NADH Dehydrogenase. Biocatalysis and Biotransformation, 1998, 16, 333-349.	2.0	8
306	The Cetus Process Revisited: A Novel Enzymatic Alternative for the Production of Aldose-Free D-Fructose. Biocatalysis and Biotransformation, 1998, 16, 365-382.	2.0	48

#	Article	IF	CITATIONS
307	Enzymatic Production of Pure D-Mannitol at High Productivity. Biocatalysis and Biotransformation, 1998, 16, 351-363.	2.0	33
308	Induction of Mannanase, Xylanase, and Endoglucanase Activities in <i>Sclerotium rolfsii</i> . Applied and Environmental Microbiology, 1998, 64, 594-600.	3.1	74
309	Efficient downstream processing of maltodextrin phosphorylase from Escherichia coli and stabilization of the enzyme by immobilization onto hydroxyapatite. Journal of Biotechnology, 1997, 58, 157-166.	3.8	11
310	Improved operational stability of cell-free glucose-fructose oxidoreductase fromZymomonas mobilis for the efficient synthesis of sorbitol and gluconic acid in a continuous ultrafiltration membrane reactor. , 1997, 53, 623-629.		22
311	Maltodextrin Phosphorylase from Escherichia coli: Production and Application for the Synthesis of α-Glucose-1-Phosphatea. Annals of the New York Academy of Sciences, 1996, 782, 208-218.	3.8	7
312	Simultaneous Enzymatic Synthesis of Mannitol and Gluconic Acid: II. Development of a Continuous Process for a Coupled Nad(H)-Dependent Enzyme System. Biocatalysis and Biotransformation, 1996, 14, 47-65.	2.0	20
313	Simultaneous Enzymatic Synthesis of Mannitol and Gluconic Acid: I. Characterization Of The Enzyme System. Biocatalysis and Biotransformation, 1996, 14, 31-45.	2.0	8
314	Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnology and Bioengineering, 1996, 52, 387-396.	3.3	88
315	Efficient protection of glucose-fructose oxidoreductase from Zymomonas mobilis against irreversible inactivation during its catalytic action. Enzyme and Microbial Technology, 1995, 17, 235-240.	3.2	19
316	Application of Escherichia coli maltodextrin-phosphorylase for the continuous production of glucose-1-phosphate. Enzyme and Microbial Technology, 1995, 17, 140-146.	3.2	26
317	Specific quantification oftrichoderma reesei cellulases in reconstituted mixtures and its application to cellulase-cellulose binding studies. Biotechnology and Bioengineering, 1994, 44, 961-966.	3.3	49
318	Hydrolysis of cellooligosaccharides by Trichoderma reesei cellobiohydrolases: Experimental data and kinetic modeling. Enzyme and Microbial Technology, 1994, 16, 43-52.	3.2	61
319	A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose. Biotechnology and Bioengineering, 1993, 42, 469-479.	3.3	74
320	Continuous-Flow Microchannel Reactors with Surface-Immobilized Biocatalysts. , 0, , 43-54.		1