
Changlian Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4803503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of vitamin D supplementation in treatment of children with autism spectrum disorder: a systematic review and meta-analysis of randomized controlled trials. Nutritional Neuroscience, 2022, 25, 835-845.	3.1	21
2	An overlooked subset of Cx3cr1wt/wt microglia in the Cx3cr1CreER-Eyfp/wt mouse has a repopulation advantage over Cx3cr1CreER-Eyfp/wt microglia following microglial depletion. Journal of Neuroinflammation, 2022, 19, 20.	7.2	12
3	Outcome Analysis of Severe Hyperbilirubinemia in Neonates Undergoing Exchange Transfusion. Neuropediatrics, 2022, , .	0.6	2
4	Changes in the live birth profile in Henan, China: AÂhospital registryâ€based study. Birth, 2022, 49, 497-505.	2.2	2
5	The role of probiotics in children with autism spectrum disorders: A study protocol for a randomised controlled trial. PLoS ONE, 2022, 17, e0263109.	2.5	8
6	The Impact of Different Degrees of Intraventricular Hemorrhage on Mortality and Neurological Outcomes in Very Preterm Infants: A Prospective Cohort Study. Frontiers in Neurology, 2022, 13, 853417.	2.4	12
7	Autophagy Inhibition Reduces Irradiation-Induced Subcortical White Matter Injury Not by Reducing Inflammation, but by Increasing Mitochondrial Fusion and Inhibiting Mitochondrial Fission. Molecular Neurobiology, 2022, 59, 1199-1213.	4.0	4
8	Temporal brain transcriptome analysis reveals key pathological events after germinal matrix hemorrhage in neonatal rats. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1632-1649.	4.3	9
9	Epigenetic restoration of voltageâ€gated potassium channel Kv1.2 alleviates nerve injuryâ€induced neuropathic pain. Journal of Neurochemistry, 2021, 156, 367-378.	3.9	34
10	Luminal polyethylene glycol solution delays the onset of preservation injury in the human intestine. American Journal of Transplantation, 2021, 21, 2220-2230.	4.7	8
11	Constitutive PGC-1α Overexpression in Skeletal Muscle Does Not Contribute to Exercise-Induced Neurogenesis. Molecular Neurobiology, 2021, 58, 1465-1481.	4.0	8
12	Umbilical cord blood cells for the treatment of preterm white matter injury: Potential effects and treatment options. Journal of Neuroscience Research, 2021, 99, 778-792.	2.9	2
13	Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury. Neural Regeneration Research, 2021, 16, 205.	3.0	22
14	Inhibition of Colony Stimulating Factor 1 Receptor Suppresses Neuroinflammation and Neonatal Hypoxic-Ischemic Brain Injury. Frontiers in Neurology, 2021, 12, 607370.	2.4	8
15	latrogenic vs. Spontaneous Preterm Birth: A Retrospective Study of Neonatal Outcome Among Very Preterm Infants. Frontiers in Neurology, 2021, 12, 649749.	2.4	14
16	The different mechanisms of peripheral and central TLR4 on chronic postsurgical pain in rats. Journal of Anatomy, 2021, 239, 111-124.	1.5	3
17	Population Pharmacokinetics of Lithium in Young Pediatric Patients With Intellectual Disability. Frontiers in Pharmacology, 2021, 12, 650298.	3.5	2
18	Biallelic variants in <i>HPDL</i> cause pure and complicated hereditary spastic paraplegia. Brain, 2021, 144, 1422-1434	7.6	22

#	Article	IF	CITATIONS
19	Erythropoietin Improves Poor Outcomes in Preterm Infants with Intraventricular Hemorrhage. CNS Drugs, 2021, 35, 681-690.	5.9	16
20	The association of severe anemia, red blood cell transfusion and necrotizing enterocolitis in neonates. PLoS ONE, 2021, 16, e0254810.	2.5	14
21	Authors' Reply to Chevle et al.: Comment on "Erythropoietin Improves Poor Outcomes in Preterm Infants with Intraventricular Hemorrhage― CNS Drugs, 2021, 35, 1139-1140.	5.9	1
22	TEP1 is a risk gene for sporadic cerebral palsy. Journal of Genetics and Genomics, 2021, 48, 1134-1134.	3.9	1
23	White matter injury but not germinal matrix hemorrhage induces elevated osteopontin expression in human preterm brains. Acta Neuropathologica Communications, 2021, 9, 166.	5.2	5
24	Editorial: Experimental and Clinical Approaches in the Pursuit of Novel Therapeutic Strategies for Perinatal Brain Injury and Its Neurological Sequelae. Frontiers in Cellular Neuroscience, 2021, 15, 762111.	3.7	0
25	MiR-424 overexpression protects alveolar epithelial cells from LPS-induced apoptosis and inflammation by targeting FGF2 via the NF-I®B pathway. Life Sciences, 2020, 242, 117213.	4.3	29
26	Umbilical cord blood stem cell therapy in premature brain injury: Opportunities and challenges. Journal of Neuroscience Research, 2020, 98, 815-825.	2.9	22
27	Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nature Genetics, 2020, 52, 1046-1056.	21.4	96
28	Effect of early prophylactic low-dose recombinant human erythropoietin on retinopathy of prematurity in very preterm infants. Journal of Translational Medicine, 2020, 18, 397.	4.4	13
29	Early application of caffeine improves white matter development in very preterm infants. Respiratory Physiology and Neurobiology, 2020, 281, 103495.	1.6	17
30	The Association Study of IL-23R Polymorphisms With Cerebral Palsy in Chinese Population. Frontiers in Neuroscience, 2020, 14, 590098.	2.8	3
31	Cranial irradiation alters neuroinflammation and neural proliferation in the pituitary gland and induces lateâ€onset hormone deficiency. Journal of Cellular and Molecular Medicine, 2020, 24, 14571-14582.	3.6	10
32	Gut microbiota changes in patients with autism spectrum disorders. Journal of Psychiatric Research, 2020, 129, 149-159.	3.1	78
33	Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial. Journal of Translational Medicine, 2020, 18, 308.	4.4	23
34	Birth Asphyxia Is Associated With Increased Risk of Cerebral Palsy: A Meta-Analysis. Frontiers in Neurology, 2020, 11, 704.	2.4	21
35	A systematic review of the clinical and genetic characteristics of Chinese patients with cystic fibrosis. Pediatric Pulmonology, 2020, 55, 3005-3011.	2.0	11
36	Epidemiological and Clinical Characteristics of COVID-19 in Children: A Systematic Review and Meta-Analysis. Frontiers in Pediatrics, 2020, 8, 591132.	1.9	86

#	Article	IF	CITATIONS
37	Early prediction of adverse outcomes in infants with acute bilirubin encephalopathy. Annals of Clinical and Translational Neurology, 2020, 7, 1141-1147.	3.7	7
38	Prognostic value of amplitudeâ€integrated EEG in neonates with high risk of neurological sequelae. Annals of Clinical and Translational Neurology, 2020, 7, 210-218.	3.7	5
39	Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death and Disease, 2020, 11, 77.	6.3	27
40	Inhibiting the interaction between apoptosis-inducing factor and cyclophilin A prevents brain injury in neonatal mice after hypoxia-ischemia. Neuropharmacology, 2020, 171, 108088.	4.1	16
41	The Potential Role of Ferroptosis in Neonatal Brain Injury. Frontiers in Neuroscience, 2019, 13, 115.	2.8	83
42	Selective Neural Deletion of the Atg7 Gene Reduces Irradiation-Induced Cerebellar White Matter Injury in the Juvenile Mouse Brain by Ameliorating Oligodendrocyte Progenitor Cell Loss. Frontiers in Cellular Neuroscience, 2019, 13, 241.	3.7	5
43	Sex differences in neonatal mouse brain injury after hypoxiaâ€ischemia and adaptaquin treatment. Journal of Neurochemistry, 2019, 150, 759-775.	3.9	20
44	Iron Metabolism and Brain Development in Premature Infants. Frontiers in Physiology, 2019, 10, 463.	2.8	57
45	Early Amplitude-Integrated Electroencephalography Predicts Long-Term Outcomes in Term and Near-Term Newborns With Severe Hyperbilirubinemia. Pediatric Neurology, 2019, 98, 68-73.	2.1	15
46	Genetic or Other Causation Should Not Change the Clinical Diagnosis of Cerebral Palsy. Journal of Child Neurology, 2019, 34, 472-476.	1.4	82
47	Autophagy-Related Gene 7 Polymorphisms and Cerebral Palsy in Chinese Infants. Frontiers in Cellular Neuroscience, 2019, 13, 494.	3.7	14
48	Folic Acid and Risk of Preterm Birth: A Meta-Analysis. Frontiers in Neuroscience, 2019, 13, 1284.	2.8	33
49	Variants of the OLIG2 Gene are Associated with Cerebral Palsy in Chinese Han Infants with Hypoxic–Ischemic Encephalopathy. NeuroMolecular Medicine, 2019, 21, 75-84.	3.4	24
50	Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radical Biology and Medicine, 2019, 131, 345-355.	2.9	126
51	Lack of the brain-specific isoform of apoptosis-inducing factor aggravates cerebral damage in a model of neonatal hypoxia–ischemia. Cell Death and Disease, 2019, 10, 3.	6.3	25
52	Cranial Irradiation Induces Hypothalamic Injury and Late-Onset Metabolic Disturbances in Juvenile Female Rats. Developmental Neuroscience, 2018, 40, 120-133.	2.0	12
53	Cerebral palsy and genomics: an international consortium. Developmental Medicine and Child Neurology, 2018, 60, 209-210.	2.1	16
54	γδT Cells Contribute to Injury in the Developing Brain. American Journal of Pathology, 2018, 188, 757-767.	3.8	44

#	Article	IF	CITATIONS
55	Lithium Treatment Is Safe in Children With Intellectual Disability. Frontiers in Molecular Neuroscience, 2018, 11, 425.	2.9	18
56	Grafting Neural Stem and Progenitor Cells Into the Hippocampus of Juvenile, Irradiated Mice Normalizes Behavior Deficits. Frontiers in Neurology, 2018, 9, 715.	2.4	11
57	De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias. American Journal of Human Genetics, 2018, 103, 666-678.	6.2	87
58	Carbamylated Erythropoietin Decreased Proliferation and Neurogenesis in the Subventricular Zone, but Not the Dentate Gyrus, After Irradiation to the Developing Rat Brain. Frontiers in Neurology, 2018, 9, 738.	2.4	8
59	Association of NOS1 gene polymorphisms with cerebral palsy in a Han Chinese population: a case-control study. BMC Medical Genomics, 2018, 11, 56.	1.5	9
60	Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury. Frontiers in Neurology, 2018, 9, 159.	2.4	37
61	Combined Analysis of Interleukin-10 Gene Polymorphisms and Protein Expression in Children With Cerebral Palsy. Frontiers in Neurology, 2018, 9, 182.	2.4	15
62	Haploinsufficiency in the mitochondrial protein CHCHD4 reduces brain injury in a mouse model of neonatal hypoxia-ischemia. Cell Death and Disease, 2017, 8, e2781-e2781.	6.3	18
63	Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain. Cell Death and Disease, 2017, 8, e2694-e2694.	6.3	34
64	Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum. Scientific Reports, 2017, 7, 46181.	3.3	50
65	Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation. Electromagnetic Biology and Medicine, 2017, 36, 158-166.	1.4	6
66	A Variant of the Autophagy-Related 5 Gene Is Associated with Child Cerebral Palsy. Frontiers in Cellular Neuroscience, 2017, 11, 407.	3.7	30
67	Î ³ ÎT cells but not αβT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice. Journal of Neuroinflammation, 2017, 14, 255.	7.2	32
68	Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain. Oncotarget, 2017, 8, 34111-34127.	1.8	27
69	Association Between Osteopontin Gene Polymorphisms and Cerebral Palsy in a Chinese Population. NeuroMolecular Medicine, 2016, 18, 232-238.	3.4	8
70	Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Annals of Neurology, 2016, 80, 24-34.	5.3	103
71	Reply. Annals of Neurology, 2016, 80, 952-953.	5.3	1
72	Neuroprotection by selective neuronal deletion of <i>Atg7</i> in neonatal brain injury. Autophagy, 2016, 12, 410-423.	9.1	140

#	Article	IF	CITATIONS
73	GSK3β inhibition protects the immature brain from hypoxic-ischaemic insult via reduced STAT3 signalling. Neuropharmacology, 2016, 101, 13-23.	4.1	38
74	Acute and Long-Term Effects of Brief Sevoflurane Anesthesia During the Early Postnatal Period in Rats. Toxicological Sciences, 2016, 149, 121-133.	3.1	55
75	Cranial irradiation induces transient microglia accumulation, followed by long-lasting inflammation and loss of microglia. Oncotarget, 2016, 7, 82305-82323.	1.8	51
76	Dichloroacetate treatment improves mitochondrial metabolism and reduces brain injury in neonatal mice. Oncotarget, 2016, 7, 31708-31722.	1.8	40
77	Early amplitude-integrated electroencephalography predicts brain injury and neurological outcome in very preterm infants. Scientific Reports, 2015, 5, 13810.	3.3	33
78	Changes in the Incidence of Congenital Anomalies in Henan Province, China, from 1997 to 2011. PLoS ONE, 2015, 10, e0131874.	2.5	13
79	Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Molecular Cell, 2015, 58, 1001-1014.	9.7	164
80	Irradiation of the Juvenile Brain Provokes a Shift from Long-Term Potentiation to Long-Term Depression. Developmental Neuroscience, 2015, 37, 263-272.	2.0	131
81	Luminal solutions protect mucosal barrier during extended preservation. Journal of Surgical Research, 2015, 194, 289-296.	1.6	21
82	Beneficence and Nonmaleficence in Treating Neonatal Hypoxic-Ischemic Brain Injury. Developmental Neuroscience, 2015, 37, 305-310.	2.0	9
83	Predictive Value of Early Amplitude-Integrated Electroencephalography for Later Diagnosed Cerebral White Matter Damage in Preterm Infants. Neuropediatrics, 2014, 45, 314-320.	0.6	13
84	The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. Journal of Neuroinflammation, 2014, 11, 153.	7.2	63
85	High-Frequency Oscillatory Ventilation Versus Synchronized Intermittent Mandatory Ventilation Plus Pressure Support in Preterm Infants With Severe Respiratory Distress Syndrome. Respiratory Care, 2014, 59, 159-169.	1.6	44
86	Delayed, Long-Term Administration of the Caspase Inhibitor Q-VD-OPh Reduced Brain Injury Induced by Neonatal Hypoxia-Ischemia. Developmental Neuroscience, 2014, 36, 64-72.	2.0	37
87	The association of apolipoprotein E gene polymorphisms with cerebral palsy in Chinese infants. Molecular Genetics and Genomics, 2014, 289, 411-416.	2.1	15
88	The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. Journal of Neuroinflammation, 2014, 11, 100.	7.2	51
89	Transplantation of Enteric Neural Stem/Progenitor Cells into the Irradiated Young Mouse Hippocampus. Cell Transplantation, 2014, 23, 1657-1671.	2.5	24
90	Therapeutic Benefits of Delayed Lithium Administration in the Neonatal Rat after Cerebral Hypoxia-Ischemia. PLoS ONE, 2014, 9, e107192.	2.5	34

#	Article	IF	CITATIONS
91	Inhaled Nitric Oxide Protects Males But not Females from Neonatal Mouse Hypoxia–Ischemia Brain Injury. Translational Stroke Research, 2013, 4, 201-207.	4.2	32
92	The Use of the WINROP Screening Algorithm for the Prediction of Retinopathy of Prematurity in a Chinese Population. Neonatology, 2013, 104, 127-132.	2.0	39
93	Characteristics of Respiratory Distress Syndrome in Infants of Different Gestational Ages. Lung, 2013, 191, 425-433.	3.3	34
94	Genetic association study of adaptor protein complex 4 with cerebral palsy in a Han Chinese population. Molecular Biology Reports, 2013, 40, 6459-6467.	2.3	9
95	Association of Interleukin 6 gene polymorphisms with genetic susceptibilities to spastic tetraplegia in males: A case-control study. Cytokine, 2013, 61, 826-830.	3.2	19
96	The association between GAD1 gene polymorphisms and cerebral palsy in Chinese infants. Cytology and Genetics, 2013, 47, 276-281.	0.5	7
97	Inhalation of Nitric Oxide Prevents Ischemic Brain Damage in Experimental Stroke by Selective Dilatation of Collateral Arterioles. Circulation Research, 2012, 110, 727-738.	4.5	163
98	Decreased oxidative stress during glycolytic inhibition enables maintenance of ATP production and astrocytic survival. Neurochemistry International, 2012, 61, 291-301.	3.8	11
99	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
100	Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Molecular and Cellular Neurosciences, 2012, 51, 32-42.	2.2	89
101	Apoptosis-inducing factor downregulation increased neuronal progenitor, but not stem cell, survival in the neonatal hippocampus after cerebral hypoxia-ischemia. Molecular Neurodegeneration, 2012, 7, 17.	10.8	18
102	Biochemical and Molecular Biological Assessments of Neonatal Hypoxia–Ischemia: Cell Signaling. Springer Protocols, 2012, , 211-219.	0.3	0
103	Morphological Assessments of Neonatal Hypoxia–Ischemia: In Situ Cell Degeneration. Springer Protocols, 2012, , 189-200.	0.3	0
104	Maternal Mortality in Henan Province, China: Changes between 1996 and 2009. PLoS ONE, 2012, 7, e47153.	2.5	27
105	Methylenetetrahydrofolate reductase gene polymorphisms and cerebral palsy in Chinese infants. Journal of Human Genetics, 2011, 56, 17-21.	2.3	16
106	Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function. Biochemical and Biophysical Research Communications, 2011, 404, 291-296.	2.1	7
107	Role of apoptosis inducing factor (AIF) for hippocampal neuronal cell death following global cerebral ischemia in mice. Neuroscience Letters, 2011, 499, 1-3.	2.1	33
108	Risk factors for neurodevelopmental deficits in congenital hypothyroidism after early substitution treatment. Endocrine Journal, 2011, 58, 355-361.	1.6	41

#	Article	IF	CITATIONS
109	Isolation of brain mitochondria from neonatal mice. Journal of Neurochemistry, 2011, 119, 1253-1261.	3.9	30
110	Trends in live births in the past 20 years in Zhengzhou, China. Acta Obstetricia Et Gynecologica Scandinavica, 2011, 90, 332-337.	2.8	24
111	Lithium-Mediated Long-Term Neuroprotection in Neonatal Rat Hypoxia–Ischemia is Associated with Antiinflammatory Effects and Enhanced Proliferation and Survival of Neural Stem/Progenitor Cells. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2106-2115.	4.3	102
112	Electroacupuncture enhances cell proliferation and neuronal differentiation in young rat brains. Neurological Sciences, 2011, 32, 369-374.	1.9	24
113	Systemic Stimulation of TLR2 Impairs Neonatal Mouse Brain Development. PLoS ONE, 2011, 6, e19583.	2.5	81
114	Mortality rates of children aged under five in Henan province, China, 2004-2008. Paediatric and Perinatal Epidemiology, 2010, 24, 343-348.	1.7	14
115	Isoflurane Anesthesia Induced Persistent, Progressive Memory Impairment, Caused a Loss of Neural Stem Cells, and Reduced Neurogenesis in Young, but Not Adult, Rodents. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1017-1030.	4.3	268
116	Neuroprotective Effect of Bax-Inhibiting Peptide on Neonatal Brain Injury. Stroke, 2010, 41, 2050-2055.	2.0	69
117	Nuclear translocation and calpain-dependent reduction of Bcl-2 after neonatal cerebral hypoxia–ischemia. Brain, Behavior, and Immunity, 2010, 24, 822-830.	4.1	18
118	Erythropoietin: not just about erythropoiesis. Lancet, The, 2010, 375, 2142.	13.7	48
119	Developmental Shift of Cyclophilin D Contribution to Hypoxic-Ischemic Brain Injury. Journal of Neuroscience, 2009, 29, 2588-2596.	3.6	113
120	Erythropoietin Improved Neurologic Outcomes in Newborns With Hypoxic-Ischemic Encephalopathy. Pediatrics, 2009, 124, e218-e226.	2.1	310
121	Systemic Hypothermia Induced within 10 Hours After Birth Improved Neurological Outcome in Newborns with Hypoxic-Ischemic Encephalopathy. Hospital Practice (1995), 2009, 37, 147-152.	1.0	31
122	Age-Dependent Regenerative Responses in the Striatum and Cortex after Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 342-354.	4.3	43
123	Irradiation to the immature brain attenuates neurogenesis and exacerbates subsequent hypoxicâ€ischemic brain injury in the adult. Journal of Neurochemistry, 2009, 111, 1447-1456.	3.9	32
124	Cerebral Hypoxia—Ischemia in Neonatal Rats or Mice: A Model of Perinatal Brain Injury. Springer Protocols, 2009, , 221-230.	0.3	2
125	Reduced Liver Injury and Cytokine Release After Transplantation of Preconditioned Intestines. Journal of Surgical Research, 2009, 154, 30-37.	1.6	12
126	Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14632-14637.	7.1	186

#	Article	IF	CITATIONS
127	Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 2008, 10, 676-687.	10.3	1,025
128	Causal Role of Apoptosis-Inducing Factor for Neuronal Cell Death Following Traumatic Brain Injury. American Journal of Pathology, 2008, 173, 1795-1805.	3.8	75
129	Developing Postmitotic Mammalian Neurons <i>In Vivo</i> Lacking Apaf-1 Undergo Programmed Cell Death by a Caspase-Independent, Nonapoptotic Pathway Involving Autophagy. Journal of Neuroscience, 2008, 28, 1490-1497.	3.6	37
130	Proliferative and Protective Effects of Growth Hormone Secretagogues on Adult Rat Hippocampal Progenitor Cells. Endocrinology, 2008, 149, 2191-2199.	2.8	58
131	Ciliated epithelial-specific and regional-specific expression and regulation of the estrogen receptor-β2 in the fallopian tubes of immature rats: a possible mechanism for estrogen-mediated transport process in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E147-E158.	3.5	50
132	Matrix Metalloproteinase-9 Gene Knock-out Protects the Immature Brain after Cerebral Hypoxia–Ischemia. Journal of Neuroscience, 2007, 27, 1511-1518.	3.6	210
133	Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. Journal of Experimental Medicine, 2007, 204, 1741-1748.	8.5	197
134	Dual Role of Intrauterine Immune Challenge on Neonatal and Adult Brain Vulnerability to Hypoxia-Ischemia. Journal of Neuropathology and Experimental Neurology, 2007, 66, 552-561.	1.7	88
135	<i>N</i> â€acetylcysteine reduces lipopolysaccharideâ€sensitized hypoxicâ€ischemic brain injury. Annals of Neurology, 2007, 61, 263-271.	5.3	146
136	Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death and Differentiation, 2007, 14, 775-784.	11.2	189
137	Less Neurogenesis and Inflammation in the Immature than in the Juvenile Brain after Cerebral Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 785-794.	4.3	67
138	X chromosomeâ€linked inhibitor of apoptosis protein reduces oxidative stress after cerebral irradiation or hypoxiaâ€ischemia through upâ€regulation of mitochondrial antioxidants. European Journal of Neuroscience, 2007, 26, 3402-3410.	2.6	37
139	Death effector activation in the subventricular zone subsequent to perinatal hypoxia/ischemia. Journal of Neurochemistry, 2007, 103, 1121-1131.	3.9	23
140	Effects of intrauterine inflammation on the developing mouse brain. Brain Research, 2007, 1144, 180-185.	2.2	64
141	Donor pretreatment with FK506 reduces reperfusion injury and accelerates intestinal graft recovery in rats. Surgery, 2007, 141, 667-677.	1.9	35
142	Disruption of Interleukin-18, but Not Interleukin-1, Increases Vulnerability to Preterm Delivery and Fetal Mortality after Intrauterine Inflammation. American Journal of Pathology, 2006, 169, 967-976.	3.8	42
143	Intraischemic mild hypothermia prevents neuronal cell death and tissue loss after neonatal cerebral hypoxia-ischemia. European Journal of Neuroscience, 2006, 23, 387-393.	2.6	25
144	Neuroprotective properties of memantine in differentin vitroandin vivomodels of excitotoxicity. European Journal of Neuroscience, 2006, 23, 2611-2622.	2.6	154

#	Article	IF	CITATIONS
145	Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia–ischaemia. Journal of Neurochemistry, 2006, 96, 1016-1027.	3.9	252
146	Nuclear progesterone receptor A and B isoforms in mouse fallopian tube and uterus: implications for expression, regulation, and cellular function. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E59-E72.	3.5	38
147	The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia–ischemia. Cell Death and Differentiation, 2005, 12, 162-176.	11.2	383
148	Apoptosis-Inducing Factor Triggered by Poly(ADP-Ribose) Polymerase and Bid Mediates Neuronal Cell Death after Oxygen-Glucose Deprivation and Focal Cerebral Ischemia. Journal of Neuroscience, 2005, 25, 10262-10272.	3.6	309
149	Apoptosis inducing factor (AIF) is essential for neuronal cell death following transient focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S466-S466.	4.3	0
150	Effect of erythropoietin on neonatal hypoxia-ischemia encephalopathy. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S44-S44.	4.3	0
151	Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia. Journal of Neurochemistry, 2004, 90, 462-471.	3.9	77
152	The nonerythropoietic asialoerythropoietin protects against neonatal hypoxiaâ€ischemia as potently as erythropoietin. Journal of Neurochemistry, 2004, 91, 900-910.	3.9	110
153	Nuclear Translocation of Apoptosis-Inducing Factor after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 458-466.	4.3	160
154	PARPâ€1 gene disruption in mice preferentially protects males from perinatal brain injury. Journal of Neurochemistry, 2004, 90, 1068-1075.	3.9	266
155	Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia–ischemia. Brain Research, 2004, 996, 67-75.	2.2	89
156	X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia–ischemia. Neurobiology of Disease, 2004, 16, 179-189.	4.4	90
157	Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia. Journal of Neurochemistry, 2003, 85, 1431-1442.	3.9	85
158	Death mechanisms in status epilepticus-generated neurons and effects of additional seizures on their survival. Neurobiology of Disease, 2003, 14, 513-523.	4.4	50
159	Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochemical and Biophysical Research Communications, 2003, 304, 551-559.	2.1	138
160	Involvement of apoptosisâ€inducing factor in neuronal death after hypoxiaâ€ischemia in the neonatal rat brain. Journal of Neurochemistry, 2003, 86, 306-317.	3.9	251
161	Activation of ERK1/2 after neonatal rat cerebral hypoxia–ischaemia. Journal of Neurochemistry, 2003, 86, 351-362.	3.9	69
162	Neuroprotection by Selective Nitric Oxide Synthase Inhibition at 24 Hours After Perinatal Hypoxia-Ischemia. Stroke, 2002, 33, 2304-2310.	2.0	118

#	Article	IF	CITATIONS
163	Effects of Selective Nitric Oxide Synthase Inhibition on IGF-1, Caspases and Cytokines in a Newborn Piglet Model of Perinatal Hypoxia-Ischaemia. Developmental Neuroscience, 2002, 24, 396-404.	2.0	24
164	Correlation Between Caspase-3 Activation and Three Different Markers of DNA Damage in Neonatal Cerebral Hypoxia-Ischemia. Journal of Neurochemistry, 2002, 75, 819-829.	3.9	108
165	Synergistic Activation of Caspase-3 by m-Calpain after Neonatal Hypoxia-Ischemia. Journal of Biological Chemistry, 2001, 276, 10191-10198.	3.4	401
166	NMDA blockade attenuates caspase-3 activation and DNA fragmentation after neonatal hypoxia–ischemia. NeuroReport, 2000, 11, 2833-2836.	1.2	42