List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4803342/publications.pdf

Version: 2024-02-01

ROYANA TRUSCA

#	Article	IF	CITATIONS
1	Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources, 2011, 6, 487-512.	1.0	165
2	Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printing. Nanomaterials, 2020, 10, 51.	4.1	87
3	Structural and piezoelectric characteristics of BNT–BT0.05 thin films processed by sol–gel technique. Journal of Alloys and Compounds, 2012, 515, 166-170.	5.5	71
4	Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Applied Surface Science, 2014, 302, 262-267.	6.1	64
5	Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applications. Polymers, 2018, 10, 1249.	4.5	59
6	Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications. Pharmaceutics, 2021, 13, 957.	4.5	59
7	MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Applied Surface Science, 2014, 306, 16-22.	6.1	51
8	Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route. Materials and Design, 2016, 110, 790-801.	7.0	50
9	Thermal and mechanical properties of poly(3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Industrial Crops and Products, 2020, 145, 112071.	5.2	50
10	Antimicrobial Wound Dressings as Potential Materials for Skin Tissue Regeneration. Materials, 2019, 12, 1859.	2.9	46
11	Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. Materials Science and Engineering C, 2020, 110, 110740.	7.3	46
12	Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification. Materials, 2020, 13, 1687.	2.9	46
13	Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication, 2014, 6, 035002.	7.1	45
14	Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules, 2020, 25, 4069.	3.8	41
15	Medium Chain-Length Polyhydroxyalkanoate Copolymer Modified by Bacterial Cellulose for Medical Devices. Biomacromolecules, 2017, 18, 3222-3232.	5.4	39
16	Preparation by sol–gel and solid state reaction methods and properties investigation of double perovskite Sr2FeMoO6. Journal of the European Ceramic Society, 2013, 33, 2483-2490.	5.7	38
17	Poly(2-isopropenyl-2-oxazoline) Hydrogels for Biomedical Applications. Chemistry of Materials, 2018, 30, 7938-7949.	6.7	37
18	Fabrication and Cytotoxicity of Gemcitabine-Functionalized Magnetite Nanoparticles. Molecules, 2017, 22, 1080.	3.8	34

#	Article	IF	CITATIONS
19	Porous calcium alginate–gelatin interpenetrated matrix and its biomineralization potential. Journal of Materials Science: Materials in Medicine, 2011, 22, 451-460.	3.6	33
20	Synthesis and characterization of nanostructured zinc oxide particles synthesized by the pyrosol method. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	33
21	Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. International Journal of Pharmaceutics, 2017, 531, 35-46.	5.2	33
22	Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein Journal of Nanotechnology, 2014, 5, 872-880.	2.8	31
23	Surface Treatment of Bacterial Cellulose in Mild, Eco-Friendly Conditions. Coatings, 2018, 8, 221.	2.6	30
24	On the bioactivity of adherent bioglass thin films synthesized by magnetron sputtering techniques. Thin Solid Films, 2010, 518, 5955-5964.	1.8	29
25	Role of bacterial cellulose and poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate) in poly (3-hydroxybutyrate) blends and composites. Cellulose, 2018, 25, 5569-5591.	4.9	29
26	Biomimetic Composite Scaffold Based on Naturally Derived Biomaterials. Polymers, 2020, 12, 1161.	4.5	29
27	Surface evaluation of titanium oxynitride coatings used for developing layered cardiovascular stents. Materials Science and Engineering C, 2019, 99, 405-416.	7.3	28
28	Oxazoline-functional polymer particles graft with azo-dye. Reactive and Functional Polymers, 2011, 71, 373-379.	4.1	26
29	Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and In Vitro Behavior. Nanomaterials, 2021, 11, 2289.	4.1	26
30	Lanthanum influence on the structure, dielectric properties and luminescence of BaTiO 3 ceramics processed by spark plasma sintering technique. Journal of Alloys and Compounds, 2017, 706, 538-545.	5.5	25
31	Titanium dioxide nanotube films. Materials Science and Engineering C, 2014, 37, 374-382.	7.3	24
32	Influence of the size and the morphology of ZnO nanoparticles on cell viability. Comptes Rendus Chimie, 2015, 18, 1335-1343.	0.5	24
33	Multifunctional Platforms Based on Graphene Oxide and Natural Products. Medicina (Lithuania), 2019, 55, 230.	2.0	23
34	Influence of filler/reinforcing agent and post-curing on the flexural properties of woven and unidirectional glass fiber-reinforced composites. Journal of Materials Science, 2012, 47, 3305-3314.	3.7	21
35	Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization. Applied Surface Science, 2015, 336, 407-412.	6.1	19
36	Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections. Applied Surface Science, 2016, 374, 387-396.	6.1	19

#	Article	IF	CITATIONS
37	Surface properties, thermal, and mechanical characteristics of poly(vinyl alcohol)–starchâ€bacterial cellulose composite films. Journal of Applied Polymer Science, 2018, 135, 45800.	2.6	18
38	Synthesis and Characterization of Photoluminescent Ce(III) and Ce(IV) Substituted Hydroxyapatite Nanomaterials by Co-Precipitation Method: Cytotoxicity and Biocompatibility Evaluation. Nanomaterials, 2021, 11, 1911.	4.1	18
39	Collagen/hydroxyapatite composite materials with desired ceramic properties. Journal of Electron Microscopy, 2011, 60, 253-259.	0.9	17
40	Mesoporous Silica Materials Loaded with Gallic Acid with Antimicrobial Potential. Nanomaterials, 2022, 12, 1648.	4.1	17
41	Photoluminescent Hydroxylapatite: Eu3+ Doping Effect on Biological Behaviour. Nanomaterials, 2019, 9, 1187.	4.1	16
42	Investigation of thermal behaviour of hybrid nanostructures based on Fe2O3 and PAMAM dendrimers. Journal of Thermal Analysis and Calorimetry, 2012, 110, 357-362.	3.6	15
43	MAPLE fabricated coatings based on magnetite nanoparticles embedded into biopolymeric spheres resistant to microbial colonization. Applied Surface Science, 2018, 448, 230-236.	6.1	15
44	Physicochemical Analysis of the Polydimethylsiloxane Interlayer Influence on a Hydroxyapatite Doped with Silver Coating. Journal of Nanomaterials, 2015, 2015, 1-10.	2.7	14
45	Characteristics of Ce3+-doped barium titanate nanoshell tubes prepared by template-mediated colloidal chemistry. Journal of the European Ceramic Society, 2016, 36, 1633-1642.	5.7	14
46	Biomimetic Collagen/Zn2+-Substituted Calcium Phosphate Composite Coatings on Titanium Substrates as Prospective Bioactive Layer for Implants: A Comparative Study Spin Coating vs. MAPLE. Nanomaterials, 2019, 9, 692.	4.1	14
47	Preparations of Silver/Montmorillonite Biocomposite Multilayers and Their Antifungal Activity. Coatings, 2019, 9, 817.	2.6	14
48	Enhanced Internalization of Nanoparticles Following Ionizing Radiation Leads to Mitotic Catastrophe in MG-63 Human Osteosarcoma Cells. International Journal of Molecular Sciences, 2020, 21, 7220.	4.1	14
49	Poly(3-hydroxybutyrate) Modified by Plasma and TEMPO-Oxidized Celluloses. Polymers, 2020, 12, 1510.	4.5	14
50	Nanocomposites from functionalized bacterial cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability, 2020, 179, 109203.	5.8	14
51	Multifunctional Hydroxyapatite Coated with Arthemisia absinthium Composites. Molecules, 2020, 25, 413.	3.8	14
52	Structure, morphology and optical properties of multilayered sol–gel BaTi0.85Zr0.15O3 thin films. Applied Surface Science, 2013, 265, 510-518.	6.1	13
53	Combined use of Mössbauer spectroscopy, XPS, HRTEM, dielectric and anelastic spectroscopy for estimating incipient phase separation in lead titanate-based multiferroics. Physical Chemistry Chemical Physics, 2018, 20, 14652-14663.	2.8	13
54	Biocomposite foams based on polyhydroxyalkanoate and nanocellulose: Morphological and thermo-mechanical characterization. International Journal of Biological Macromolecules, 2020, 164, 1867-1878.	7.5	13

#	Article	IF	CITATIONS
55	Application of spark plasma sintering to processing of dense Ba(Ti1â^'xSnx)O3 (x=0.13) ceramic. Journal of Alloys and Compounds, 2010, 505, 273-277.	5.5	12
56	Spark-plasma-sintering temperature dependence of structural and piezoelectric properties of BNT–BT0.08 nanostructured ceramics. Journal of Materials Science, 2012, 47, 3669-3673.	3.7	12
57	Bioevaluation of Novel Anti-Biofilm Coatings Based on PVP/Fe3O4 Nanostructures and 2-((4-Ethylphenoxy)methyl)-N- (arylcarbamothioyl)benzamides. Molecules, 2014, 19, 12011-12030.	3.8	12
58	Quantum optical lithography from 1nm resolution to pattern transfer on silicon wafer. Optics and Laser Technology, 2014, 60, 80-84.	4.6	12
59	Recent advances in synthesis, characterization of hydroxyapatite/polyurethane composites and study of their biocompatible properties. Journal of Materials Science: Materials in Medicine, 2013, 24, 2491-2503.	3.6	11
60	Fabrication and characterization of functionalized surfaces with 3-amino propyltrimethoxysilane films for anti-infective therapy applications. Applied Surface Science, 2015, 336, 401-406.	6.1	10
61	Effects of a surfactant on the morphology and photocatalytic properties of polycrystalline Fe-doped ZnO powders. Journal of Physics and Chemistry of Solids, 2018, 121, 319-328.	4.0	10
62	Investigation of thermal and catalytic degradation of polystyrene waste into styrene monomer over natural volcanic tuff and Florisil catalysts. Open Chemistry, 2013, 11, 725-735.	1.9	9
63	Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE. Applied Surface Science, 2015, 336, 234-239.	6.1	9
64	Piezoelectric/ferromagnetic BNT-BT0.08/CoFe2O4 coaxial core–shell composite nanotubes for nanoelectronic devices. Journal of Alloys and Compounds, 2018, 752, 381-388.	5.5	9
65	Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite. BioNanoScience, 2018, 8, 154-165.	3.5	9
66	Bi1â^'xEuxFeO3 Powders: Synthesis, Characterization, Magnetic and Photoluminescence Properties. Nanomaterials, 2019, 9, 1465.	4.1	9
67	Lead-Free BNT–BT0.08/CoFe2O4 Core–Shell Nanostructures with Potential Multifunctional Applications. Nanomaterials, 2020, 10, 672.	4.1	9
68	Study of the frescoes in IoneÅŸtii Govorii wooden church (Romania) using multi-technique investigations. Microchemical Journal, 2016, 126, 332-340.	4.5	8
69	The Effect of the Ionizing Radiation on Hydroxyapatite–Polydimethylsiloxane Layers. Polymer Engineering and Science, 2019, 59, 2406-2412.	3.1	8
70	Graphene Oxide-Based Silico-Phosphate Composite Films for Optical Limiting of Ultrashort Near-Infrared Laser Pulses. Nanomaterials, 2020, 10, 1638.	4.1	8
71	Structural and electrical properties of NBT–BT0.08 ceramic prepared by the pyrosol method. Ceramics International, 2013, 39, 5925-5930.	4.8	7
72	Nanotubes of piezoelectric BNT–BT0.08 obtained from sol–gel precursor. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	7

ROXANA TRUSCA

#	Article	IF	CITATIONS
73	3D structures of hydroxyapatite obtained from Rapana venosa shells using hydrothermal synthesis followed by 3D printing. Journal of Materials Science, 2019, 54, 13901-13913.	3.7	7
74	Solution for green organic thin film transistors: Fe3O4 nano-core with PABA external shell as p-type film. Journal of Materials Science: Materials in Electronics, 2020, 31, 3063-3073.	2.2	7
75	Synthesis and Characterization of Magnetite-Polysulfone Micro- and Nanobeads with Improved Chemical Stability in Acidic Media. Current Nanoscience, 2013, 9, 271-277.	1.2	7
76	Composite membranes with poly(ether ether ketone) as support and polyaniline like structure, with potential applications in fuel cells. Open Chemistry, 2013, 11, 438-445.	1.9	6
77	Characteristics of 5Âmol% Ce3+-doped barium titanate nanowires prepared by a combined route involving sol–gel chemistry and polycarbonate membrane-templated process. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	6
78	CdSe/ZnS-doped silicophosphate films prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2015, 73, 660-665.	2.4	6
79	Microfibrillated Cellulose Grafted with Metacrylic Acid as a Modifier in Poly(3-hydroxybutyrate). Polymers, 2021, 13, 3970.	4.5	6
80	Ba(Ti1â~'xSnx)O3 (x=0.13) nanomaterials produced by low-temperature aqueous synthesis. Journal of Alloys and Compounds, 2011, 509, 9934-9937.	5.5	5
81	Dielectric characterization of Ba x Sr 1â^'x Fe 12 O 19 (x =0.05â^'0.35) ceramics. Ceramics International, 2016, 42, 1050-1056.	4.8	5
82	Yttria totally stabilized zirconia nanoparticles obtained through the pyrosol method. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2499-2504.	1.8	4
83	Microstructure and electrical properties of zirconia and composite nanostructured ceramics sintered by different methods. Ceramics International, 2013, 39, 2535-2543.	4.8	4
84	Controlling the Melt Resistance to Flow as a Possibility of Improving the Miscibility and the Time Behavior of Some Blends Based on Starch. International Journal of Polymer Science, 2015, 2015, 1-12.	2.7	4
85	Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	4
86	Study of thermal decomposition of a zinc(II) monomethyl terephthalate complex, [Zn(CH3O–CO–C6H4COO)2(OH2)3]·2H2O. Journal of Thermal Analysis and Calorimetry, 2015, 121, 691-695.	3.6	4
87	Macrophage-like Cells Are Responsive to Titania Nanotube Intertube Spacing—An In Vitro Study. International Journal of Molecular Sciences, 2022, 23, 3558.	4.1	4
88	Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devices. Nanomaterials, 2022, 12, 95.	4.1	4
89	3D direct laser writing of Petabyte Optical Disk. Optics and Laser Technology, 2015, 71, 45-49.	4.6	3
90	Advanced Drug-Eluting Poly (Vinyl Chloride) Surfaces Deposited by Spin Coating. Medicina (Lithuania), 2019, 55, 421.	2.0	3

6

ROXANA TRUSCA

#	Article	IF	CITATIONS
91	Harnessing a byproduct from wastewater treatment to obtain improved starch/poly(vinyl alcohol) composites. Carbohydrate Polymers, 2020, 238, 115777.	10.2	3
92	Novel Dextran Coated Cerium Doped Hydroxyapatite Thin Films. Polymers, 2022, 14, 1826.	4.5	3
93	<i>In Situ</i> Generation of Polyaniline inside Zeolite Pores for Retention of Ions and for Controlled Drug Delivery. Key Engineering Materials, 0, 583, 91-94.	0.4	2
94	Electrochemical Biosensitivity of Titania Nanotubes towards Alkaline Phosphatase, IL-6 and IL-8 Interleukins Biomarkers. Journal of the Electrochemical Society, 2014, 161, B275-B282.	2.9	1
95	Optical, structural and morphological characterization of CdS-doped sol-gel silico-phosphate films. , 2015, , .		1
96	Influence of Sintering Strategy on the Characteristics of Sol-Gel Ba1â^'xCexTi1â^'x/4O3 Ceramics. Nanomaterials, 2019, 9, 1675.	4.1	1
97	Flax Fibres Fabric Surface Decoration with Nanoparticles - A Promising Tool for Developing Hybrid Reinforcing Agent of Thermoplastic Polymers. Fibers and Polymers, 2019, 20, 2407-2415.	2.1	1
98	Exploring the potential of inexpensive high oleic sunflower oil for new polymeric architectures. Polymers for Advanced Technologies, 2021, 32, 1813-1821.	3.2	1
99	Modulation of the PLLA Morphology through Racemic Nucleation to Reach Functional Properties Required by 3D Printed Durable Applications. Materials, 2021, 14, 6650.	2.9	1
100	Polysulfone-polyaniline blend composite membrane for fuel cells applications. , 2011, , .		0
101	Embedded Target Filler and Natural Fibres as Interface Agents in Controlling the Stretchability of New Starch and PVOH-Based Materials for Rethinked Sustainable Packaging. Materials, 2022, 15, 1377.	2.9	0
102	Fly-Ash Evaluation as Potential EOL Material Replacement of Cement in Pastes: Morpho-Structural and Physico-Chemical Properties Assessment. Materials, 2022, 15, 3092.	2.9	0