
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802833/publications.pdf Version: 2024-02-01

IOHN P CARR

#	Article	IF	CITATIONS
1	Salicylic Acid: A Likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection. Science, 1990, 250, 1002-1004.	12.6	1,245
2	Salicylic acid has a role in regulating gene expression during leaf senescence. Plant Journal, 2000, 23, 677-685.	5.7	484
3	An Antiviral Defense Role of AGO2 in Plants. PLoS ONE, 2011, 6, e14639.	2.5	321
4	Transcriptional slippage in the positiveâ€sense <scp>RNA</scp> virus family <i>Potyviridae</i> . EMBO Reports, 2015, 16, 995-1004.	4.5	192
5	Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant, Cell and Environment, 1998, 21, 685-694.	5.7	190
6	Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism Plant Cell, 1997, 9, 547-557.	6.6	179
7	Disruption of Two Defensive Signaling Pathways by a Viral RNA Silencing Suppressor. Molecular Plant-Microbe Interactions, 2010, 23, 835-845.	2.6	169
8	Cucumber Mosaic Virus 2b Protein Subcellular Targets and Interactions: Their Significance to RNA Silencing Suppressor Activity. Molecular Plant-Microbe Interactions, 2010, 23, 294-303.	2.6	165
9	Cyanide Restores N Gene–Mediated Resistance to Tobacco Mosaic Virus in Transgenic Tobacco Expressing Salicylic Acid Hydroxylase. Plant Cell, 1998, 10, 1489-1498.	6.6	148
10	Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways?. Trends in Plant Science, 1999, 4, 155-160.	8.8	145
11	Signaling in Induced Resistance. Advances in Virus Research, 2010, 76, 57-121.	2.1	144
12	A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant Journal, 2008, 56, 638-652.	5.7	140
13	Salicylic Acid Can Induce Resistance to Plant Virus Movement. Molecular Plant-Microbe Interactions, 1998, 11, 860-868.	2.6	136
14	Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. Frontiers in Plant Science, 2019, 10, 265.	3.6	134
15	Virulence and Differential Local and Systemic Spread of Cucumber mosaic virus in Tobacco are Affected by the CMV 2b Protein. Molecular Plant-Microbe Interactions, 2002, 15, 647-653.	2.6	126
16	Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene. Virology, 1989, 173, 89-97.	2.4	125
17	Activation of multiple antiviral defence mechanisms by salicylic acid. Molecular Plant Pathology, 2004, 5, 57-63.	4.2	125
18	Cross-Protection. Advances in Virus Research, 2010, 76, 211-264.	2.1	125

#	Article	IF	CITATIONS
19	Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Scientific Reports, 2011, 1, 187.	3.3	124
20	mRNAs encoding ribulose-1,5-bisphosphate carboxylase remain bound to polysomes but are not translated in amaranth seedlings transferred to darkness. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4190-4194.	7.1	122
21	Salicylic Acid Has Cell-Specific Effects on <i>Tobacco mosaic virus</i> Replication and Cell-to-Cell Movement. Plant Physiology, 2002, 128, 552-563.	4.8	119
22	Extracellular ATP is a regulator of pathogen defence in plants. Plant Journal, 2009, 60, 436-448.	5.7	116
23	Quantitativein situassay of salicylic acid in tobacco leaves using a genetically modified biosensor strain ofAcinetobactersp. ADP1. Plant Journal, 2006, 46, 1073-1083.	5.7	115
24	Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant Journal, 2007, 50, 240-252.	5.7	114
25	A viral <scp>RNA</scp> silencing suppressor interferes with abscisic acidâ€mediated signalling and induces drought tolerance in <i><scp>A</scp>rabidopsis thaliana</i> . Molecular Plant Pathology, 2013, 14, 158-170.	4.2	108
26	The Role of the <i>Cucumber mosaic virus</i> 2b Protein in Viral Movement and Symptom Induction. Molecular Plant-Microbe Interactions, 2009, 22, 642-654.	2.6	103
27	Salicylic Acid-Induced Resistance to Cucumber mosaic virus in Squash and Arabidopsis thaliana: Contrasting Mechanisms of Induction and Antiviral Action. Molecular Plant-Microbe Interactions, 2005, 18, 428-434.	2.6	101
28	Genetic Modification of Alternative Respiration Has Differential Effects on Antimycin A-Induced versus Salicylic Acid-Induced Resistance to Tobacco mosaic virus. Plant Physiology, 2003, 132, 1518-1528.	4.8	99
29	Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?. PLoS Pathogens, 2016, 12, e1005790.	4.7	86
30	Cyanide Restores N Gene-Mediated Resistance to Tobacco Mosaic Virus in Transgenic Tobacco Expressing Salicylic Acid Hydroxylase. Plant Cell, 1998, 10, 1489.	6.6	85
31	Regulation of RNA-Dependent RNA Polymerase 1 and Isochorismate Synthase Gene Expression in Arabidopsis. PLoS ONE, 2013, 8, e66530.	2.5	85
32	Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism. Plant Cell, 1997, 9, 547.	6.6	83
33	Chemically Induced Virus Resistance in Arabidopsis thaliana Is Independent of Pathogenesis-Related Protein Expression and the NPR1 Gene. Molecular Plant-Microbe Interactions, 2002, 15, 75-81.	2.6	83
34	Bean Common Mosaic Virus and Bean Common Mosaic Necrosis Virus. Advances in Virus Research, 2015, 93, 1-46.	2.1	82
35	Novel Quorum-Sensing-Controlled Genes in Erwinia carotovora subsp. carotovora: Identification of a Fungal Elicitor Homologue in a Soft-Rotting Bacterium. Molecular Plant-Microbe Interactions, 2005, 18, 343-353.	2.6	81
36	Using a Viral Vector to Reveal the Role of MicroRNA159 in Disease Symptom Induction by a Severe Strain of <i>Cucumber mosaic virus</i> . Plant Physiology, 2014, 164, 1378-1388.	4.8	78

#	Article	IF	CITATIONS
37	Genetic modification of alternative respiration in Nicotiana benthamianaaffects basal and salicylic acid-induced resistance to potato virus X. BMC Plant Biology, 2011, 11, 41.	3.6	73
38	Replicase-Mediated Resistance to Cucumber Mosaic Virus in Transgenic Plants Involves Suppression of Both Virus Replication in the Inoculated Leaves and Long-Distance Movement. Virology, 1994, 199, 439-447.	2.4	72
39	RNA binding is more critical to the suppression of silencing function of <i>Cucumber mosaic virus</i> 2b protein than nuclear localization. Rna, 2012, 18, 771-782.	3.5	72
40	A Trio of Viral Proteins Tunes Aphid-Plant Interactions in Arabidopsis thaliana. PLoS ONE, 2013, 8, e83066.	2.5	70
41	Plant defense signals: Players and pawns in plant-virus-vector interactions. Plant Science, 2019, 279, 87-95.	3.6	67
42	Maize phenylalanine ammoniaâ€lyases contribute to resistance to <i>Sugarcane mosaic virus</i> infection, mostÂlikely throughÂpositive regulation of salicylic acid accumulation. Molecular Plant Pathology, 2019, 20, 1365-1378.	4.2	64
43	Salicylic acid treatment and expression of an RNA-dependent RNA polymerase 1 transgene inhibit lethal symptoms and meristem invasion during tobacco mosaic virus infection in Nicotiana benthamiana. BMC Plant Biology, 2016, 16, 15.	3.6	63
44	Characteristics of salicylic acid-induced delay in disease caused by a necrotrophic fungal pathogen in tobacco. Physiological and Molecular Plant Pathology, 2000, 57, 47-54.	2.5	61
45	A cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. Journal of General Virology, 2007, 88, 2862-2871.	2.9	61
46	Nuclear-Cytoplasmic Partitioning of Cucumber Mosaic Virus Protein 2b Determines the Balance between Its Roles as a Virulence Determinant and an RNA-Silencing Suppressor. Journal of Virology, 2014, 88, 5228-5241.	3.4	59
47	Resistance to Tobacco Mosaic Virus Induced by the 54-kDa Gene Sequence Requires Expression of the 54-kDa Protein. Molecular Plant-Microbe Interactions, 1992, 5, 397.	2.6	59
48	Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virology Journal, 2017, 14, 91.	3.4	58
49	Isolation and nuleotide sequence of cDNA clones for the pathogenesis-related proteins PR1a, PR1b and PRIc ofNicotiana tabacumcv. Xanthi nc induced by TMV infection. Nucleic Acids Research, 1988, 16, 9861-9861.	14.5	56
50	Pathogenic modification of plants enhances longâ€distance dispersal of nonpersistently transmitted viruses to new hosts. Ecology, 2019, 100, e02725.	3.2	55
51	An essential fifth coding ORF in the sobemoviruses. Virology, 2013, 446, 397-408.	2.4	53
52	The Effects of Aspirin and Polyacrylic Acid on the Multiplication and Spread of TMV in Different Cultivars of Tobacco with and without the Nâ€gene. Journal of Phytopathology, 1983, 107, 224-232.	1.0	52
53	Identification of differentially regulated maize proteins conditioning <i>Sugarcane mosaic virus</i> systemic infection. New Phytologist, 2017, 215, 1156-1172.	7.3	51
54	Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant–aphid interactions. Journal of General Virology, 2014, 95, 733-739.	2.9	50

#	Article	IF	CITATIONS
55	Subcellular distribution analysis of the cucumber mosaic virus 2b protein. Microbiology (United) Tj ETQq1	1 0.784314 rgBT 1.8	/Qyerlock 1
56	Effects of dicer-like endoribonucleases 2 and 4 on infection of Arabidopsis thaliana by cucumber mosaic virus and a mutant virus lacking the 2b counter-defence protein gene. Journal of General Virology, 2009, 90, 2288-2292.	2.9	48
57	Viral Manipulation of Plant Stress Responses and Host Interactions With Insects. Advances in Virus Research, 2018, 102, 177-197.	2.1	48
58	Signal Transduction in Resistance to Plant Viruses. European Journal of Plant Pathology, 2001, 107, 121-128.	1.7	47
59	Effects of DICER-like proteins 2, 3 and 4 on cucumber mosaic virus and tobacco mosaic virus infections in salicylic acid-treated plants. Journal of General Virology, 2009, 90, 3010-3014.	2.9	44
60	Engineering resistance to virus transmission. Current Opinion in Virology, 2017, 26, 20-27.	5.4	43
61	Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus. Virology Journal, 2017, 14, 188.	3.4	43
62	An update on salicylic acid biosynthesis, its induction and potential exploitation by plant viruses. Current Opinion in Virology, 2020, 42, 8-17.	5.4	43
63	Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection. Journal of General Virology, 2014, 95, 1408-1413.	2.9	40
64	High-level expression of alternative oxidase protein sequences enhances the spread of viral vectors in resistant and susceptible plants. Journal of General Virology, 2004, 85, 3777-3786.	2.9	39
65	Modelling and manipulation of aphid-mediated spread of non-persistently transmitted viruses. Virus Research, 2020, 277, 197845.	2.2	39
66	Resistance in Transgenic Tobacco Plants Expressing a Nonstructural Gene Sequence of Tobacco Mosaic Virus Is a Consequence of Markedly Reduced Virus Replication. Molecular Plant-Microbe Interactions, 1991, 4, 579.	2.6	38
67	Replicase-mediated resistance. Seminars in Virology, 1993, 4, 339-347.	3.9	37
68	The Pathogenesis-Related Proteins of Plants. , 1989, , 65-109.		37
69	Mutational analysis of the <i>Potyviridae</i> transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Research, 2016, 44, 7618-7629.	14.5	36
70	Synthesis of pathogenesis-related proteins in tobacco is regulated at the level of mRNA accumulation and occurs on membrane-bound polysomes. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 7999-8003.	7.1	34
71	The effects of extracellular adenosine 5′-triphosphate on the tobacco proteome. Proteomics, 2010, 10, 235-244.	2.2	34
72	The Rumsfeld paradox: some of the things we know that we don't know about plant virus infection. Current Opinion in Plant Biology, 2013, 16, 513-519.	7.1	33

#	Article	IF	CITATIONS
73	A defect in carbohydrate metabolism ameliorates symptom severity in virus-infected Arabidopsis thaliana. Journal of General Virology, 2007, 88, 337-341.	2.9	31
74	RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases. Scientific Reports, 2016, 6, 23082.	3.3	31
75	The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183ÂkDa replicase proteins of tobacco mosaic virus in the yeast two-hybrid system. Journal of General Virology, 2000, 81, 1587-1591.	2.9	30
76	Metagenomic Analysis of Plant Virus Occurrence in Common Bean (Phaseolus vulgaris) in Central Kenya. Frontiers in Microbiology, 2018, 9, 2939.	3.5	29
77	Selfâ€interaction of the cucumber mosaic virus 2b protein plays a vital role in the suppression of <scp>RNA</scp> silencing and the induction of viral symptoms. Molecular Plant Pathology, 2013, 14, 803-812.	4.2	28
78	Different Plant Viruses Induce Changes in Feeding Behavior of Specialist and Generalist Aphids on Common Bean That Are Likely to Enhance Virus Transmission. Frontiers in Plant Science, 2019, 10, 1811.	3.6	27
79	Cucumber mosaic virus 2b proteins inhibit virusâ€induced aphid resistance in tobacco. Molecular Plant Pathology, 2020, 21, 250-257.	4.2	27
80	Symptom induction and RNA silencing suppression by the cucumber mosaic virus 2b protein. Plant Signaling and Behavior, 2010, 5, 705-708.	2.4	25
81	Manipulation of induced resistance to viruses. Current Opinion in Virology, 2017, 26, 141-148.	5.4	25
82	The biochemical properties of the two <i>Arabidopsis thaliana</i> isochorismate synthases. Biochemical Journal, 2017, 474, 1579-1590.	3.7	23
83	Are the PR1 proteins of tobacco involved in genetically engineered resistance to TMV?. Virology, 1989, 169, 470-473.	2.4	22
84	An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs. Scientific Reports, 2015, 5, 13178.	3.3	22
85	Exploring how viruses enhance plants' resilience to drought and the limits to this form of viral payback. Plant, Cell and Environment, 2017, 40, 2906-2908.	5.7	20
86	Changes in gene expression during development and thermogenesis in Arum. Functional Plant Biology, 1999, 26, 391.	2.1	14
87	Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean (Phaseolus) Tj ETQq1 2020, 11, 613772.	1 0.78431 3.6	14 rgBT /Ov 13
88	The cucumber mosaic virus 1a protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLoS Pathogens, 2020, 16, e1009125.	4.7	12
89	Effects of modifying alternative respiration on nitric oxide-induced virus resistance and PR1 protein accumulation. Journal of General Virology, 2014, 95, 2075-2081.	2.9	11
90	Viral Perturbation of Alternative Splicing of a Host Transcript Benefits Infection. Plant Physiology, 2020, 184, 1514-1531.	4.8	11

#	Article	IF	CITATIONS
91	Carbon Sink-to-Source Transition Is Coordinated with Establishment of Cell-Specific Gene Expression in a C4 Plant. Plant Cell, 1993, 5, 289.	6.6	10
92	Effects of the cucumber mosaic virus 2a protein on aphid–plant interactions inArabidopsis thaliana. Molecular Plant Pathology, 2020, 21, 1248-1254.	4.2	10
93	Allopurinol, an inhibitor of purine catabolism, enhances susceptibility of tobacco to Tobacco mosaic virus. Virus Research, 2008, 137, 257-260.	2.2	9
94	Extracellular ATP. Plant Signaling and Behavior, 2009, 4, 1078-1080.	2.4	9
95	Inositol hexakisphosphate biosynthesis underpins PAMPâ€triggered immunity toPseudomonas syringaepv.tomatoinArabidopsis thalianabut is dispensable for establishment of systemic acquired resistance. Molecular Plant Pathology, 2020, 21, 376-387.	4.2	8
96	First Report and Distribution of the Indian Mustard Aphid, Lipaphis erysimi pseudobrassicae (Hemiptera:) Tj ETQq 2020, 113, 1363-1372.	0 0 0 rgBT 1.8	/Overlock 1 8
97	An Examination of the Effect of Human α-Interferons on the Infection and Multiplication of Tobacco Mosaic Virus in Tobacco. Journal of Phytopathology, 1984, 109, 367-371.	1.0	7
98	Plant Metabolism Associated with Resistance and Susceptibility. , 2006, , 315-340.		7
99	Plant–Virus Interactions: Defence and Counter-Defence. , 0, , 134-176.		6
100	Infection of <i>Arabidopsis</i> by cucumber mosaic virus triggers jasmonateâ€dependent resistance to aphids that relies partly on the patternâ€ŧriggered immunity factor BAK1. Molecular Plant Pathology, 2021, 22, 1082-1091.	4.2	6
101	An Innate Preference of Bumblebees for Volatile Organic Compounds Emitted by Phaseolus vulgaris Plants Infected With Three Different Viruses. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
102	Plant–Virus Interactions. Methods in Molecular Biology, 2008, 451, 3-19.	0.9	6
103	Cadmium blocks viral invasion in plants. Nature Cell Biology, 2002, 4, E167-E168.	10.3	4
104	Preface. Advances in Virus Research, 2010, 76, vii.	2.1	4
105	First Report of <i>Cucumber mosaic virus</i> Infecting <i>Pimpinella brachycarpa</i> in Korea. Plant Disease, 2017, 101, 844.	1.4	4
106	Mechanisms Involved in Induced Resistance to Plant Viruses. , 2006, , 335-359.		3
107	Induced Resistance Mechanisms. , 2006, , 125-145.		3
108	Plant??????Virus Interactions: Defence and Counter-Defence. , 0, , 134-176.		2

#	Article	IF	CITATIONS
109	Susceptibility of five cabbage varieties to attack by aphids (Hemiptera: Aphididae) in the Accra plains of Ghana. Phytoparasitica, 2021, 49, 33-47.	1.2	1
110	Preface. Advances in Virus Research, 2009, 75, ix-x.	2.1	0
111	FOCUS on Cell Biology of Plant-Virus Interactions. Molecular Plant-Microbe Interactions, 2010, 23, 1367-1367.	2.6	0
112	Focus on Translational Research. Molecular Plant-Microbe Interactions, 2014, 27, 195-195.	2.6	0
113	Focus on Noncoding RNA Regulation of Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2016, 29, 155-155.	2.6	0
114	Editorial overview: Engineering for viral resistance: Vive La Résistance! Engineering plants to enhance virus resistance. Current Opinion in Virology, 2017, 26, iv-v.	5.4	0
115	RNA Viruses: Plant Pathogenic. , 2018, , 178-178.		0
116	Preface. Advances in Virus Research, 2020, 107, xi-xii.	2.1	0
117	Editorial overview: Resistance is not futile: an update on antiviral strategies in plants. Current Opinion in Virology, 2020, 42, iii-iv.	5.4	0