Fabrizio Vincenzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802326/publications.pdf

Version: 2024-02-01

87888 123424 4,660 119 38 61 citations h-index g-index papers 119 119 119 4554 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pharmacology of Adenosine Receptors: The State of the Art. Physiological Reviews, 2018, 98, 1591-1625.	28.8	495
2	The A ₃ Adenosine Receptor: History and Perspectives. Pharmacological Reviews, 2015, 67, 74-102.	16.0	204
3	Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors. Frontiers in Pharmacology, 2017, 8, 744.	3.5	134
4	A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Research and Therapy, 2011, 13, R197.	3.5	113
5	Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis and Cartilage, 2008, 16, 292-304.	1.3	110
6	A _{2A} adenosine receptor overexpression and functionality, as well as TNFâ€Î± levels, correlate with motor symptoms in Parkinson's disease. FASEB Journal, 2010, 24, 587-598.	0.5	107
7	Pulsed Electromagnetic Fields Increased the Anti-Inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts. PLoS ONE, 2013, 8, e65561.	2.5	106
8	Alteration of Adenosine Receptors in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 398-406.	5.6	101
9	Pathological overproduction: the bad side of adenosine. British Journal of Pharmacology, 2017, 174, 1945-1960.	5.4	94
10	Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes. Frontiers in Pharmacology, 2018, 9, 632.	3.5	88
11	Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E ₂ and cytokine release in human osteoarthritic synovial fibroblasts. Journal of Cellular Physiology, 2012, 227, 2461-2469.	4.1	85
12	Novel halogenated derivates of JWH-018: Behavioral and binding studies in mice. Neuropharmacology, 2015, 95, 68-82.	4.1	81
13	Adenosine analogs and electromagnetic fields inhibit prostaglandin E2Ârelease in bovine synovial fibroblasts. Osteoarthritis and Cartilage, 2009, 17, 252-262.	1.3	79
14	Normalization of A _{2A} and A ₃ adenosine receptor upâ€regulation in rheumatoid arthritis patients by treatment with antiâ€"tumor necrosis factor α but not methotrexate. Arthritis and Rheumatism, 2009, 60, 2880-2891.	6.7	74
15	Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathologica Communications, 2017, 5, 22.	5.2	73
16	Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. British Journal of Pharmacology, 2010, 160, 101-115.	5.4	63
17	Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on "tetradâ€; sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology, 2016, 233, 3685-3709.	3.1	63
18	Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	63

#	Article	IF	CITATIONS
19	Adenosine and Inflammation: Here, There and Everywhere. International Journal of Molecular Sciences, 2021, 22, 7685.	4.1	63
20	Effect of JWH-250, JWH-073 and their interaction on "tetradâ€; sensorimotor, neurological and neurochemical responses in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67, 31-50.	4.8	62
21	TRR469, a potent A1 adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology, 2014, 81, 6-14.	4.1	59
22	A 2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacological Research, 2017, 117, 9-19.	7.1	57
23	Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacological Research, 2020, 159, 104940.	7.1	57
24	Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain, 2013, 154, 864-873.	4.2	56
25	Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuronâ€Like and Microglial Cells. Journal of Cellular Physiology, 2017, 232, 1200-1208.	4.1	55
26	Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochemical Pharmacology, 2005, 70, 1601-1612.	4.4	53
27	2-Phenylpyrazolo[4,3- <i>d</i>]pyrimidin-7-one as a New Scaffold To Obtain Potent and Selective Human A ₃ Adenosine Receptor Antagonists: New Insights into the Receptorâ^Antagonist Recognition. Journal of Medicinal Chemistry, 2009, 52, 7640-7652.	6.4	51
28	Functional Tissue Engineering in Articular Cartilage Repair: Is There a Role for Electromagnetic Biophysical Stimulation?. Tissue Engineering - Part B: Reviews, 2013, 19, 353-367.	4.8	51
29	Design, Synthesis, and Pharmacological Characterization of 2-(2-Furanyl)thiazolo[5,4- <i>d</i>)pyrimidine-5,7-diamine Derivatives: New Highly Potent A _{2A} Adenosine Receptor Inverse Agonists with Antinociceptive Activity. Journal of Medicinal Chemistry, 2016, 59, 10564-10576.	6.4	49
30	Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Frontiers in Pharmacology, 2017, 8, 888.	3.5	48
31	Synthesis and Biological Evaluation of 2-Amino-3-(4-Chlorobenzoyl)-4-[<i>N</i> -(Substituted) Piperazin-1-yl]Thiophenes as Potent Allosteric Enhancers of the A _₁ Adenosine Receptor. Journal of Medicinal Chemistry, 2008, 51, 5875-5879.	6.4	46
32	Role and Function of A2A and A3 Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2017, 18, 697.	4.1	46
33	Multiple sclerosis lymphocytes upregulate <scp>A</scp> _{2A} adenosine receptors that are antiinflammatory when stimulated. European Journal of Immunology, 2013, 43, 2206-2216.	2.9	45
34	A ₃ Receptors Are Overexpressed in Pleura from Patients with Mesothelioma and Reduce Cell Growth via Akt/Nuclear Factor-κB Pathway. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 522-530.	5.6	44
35	Pyrazolo[1,5-c]quinazoline derivatives and their simplified analogues as adenosine receptor antagonists: Synthesis, structure–affinity relationships and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2013, 21, 283-294.	3.0	43
36	A2A Adenosine Receptors Are Differentially Modulated by Pharmacological Treatments in Rheumatoid Arthritis Patients and Their Stimulation Ameliorates Adjuvant-Induced Arthritis in Rats. PLoS ONE, 2013, 8, e54195.	2.5	43

#	Article	IF	CITATIONS
37	Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. International Journal of Molecular Sciences, 2020, 21, 8710.	4.1	43
38	Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 809.	4.1	41
39	The role of adenosine receptors in rheumatoid arthritis. Autoimmunity Reviews, 2010, 10, 61-64.	5.8	40
40	The stimulation of A3 adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. European Journal of Cancer, 2013, 49, 482-491.	2.8	40
41	Pharmacoâ€toxicological effects of the novel thirdâ€generation fluorinate synthetic cannabinoids, <scp>5Fâ€ADBINACA</scp> , <scp>ABâ€FUBINACA</scp> , and <scp>STSâ€135</scp> in mice. In vitro and in vivo studies. Human Psychopharmacology, 2017, 32, e2601.	1.5	40
42	Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. Advances in Experimental Medicine and Biology, 2017, 1051, 193-232.	1.6	40
43	Pharmacological characterization of P2X1 and P2X3 purinergic receptors in bovine chondrocytes. Osteoarthritis and Cartilage, 2008, 16, 1421-1429.	1.3	39
44	The Anti-Tumor Effect of A3 Adenosine Receptors Is Potentiated by Pulsed Electromagnetic Fields in Cultured Neural Cancer Cells. PLoS ONE, 2012, 7, e39317.	2.5	39
45	ST 1535: a preferential A2A adenosine receptor antagonist. International Journal of Neuropsychopharmacology, 2006, 9, 575.	2.1	37
46	7-Oxo-[1,4]oxazino[2,3,4- <i>ij</i>]quinoline-6-carboxamides as Selective CB ₂ Cannabinoid Receptor Ligands: Structural Investigations around a Novel Class of Full Agonists. Journal of Medicinal Chemistry, 2012, 55, 6608-6623.	6.4	36
47	Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists. European Journal of Medicinal Chemistry, 2016, 113, 11-27.	5.5	36
48	Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Frontiers in Psychiatry, 2017, 8, 130.	2.6	36
49	A _{2A} adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 406-413.	1.7	34
50	Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety. Neuropharmacology, 2016, 111, 283-292.	4.1	33
51	Targeting A3 and A2A adenosine receptors in the fight against cancer. Expert Opinion on Therapeutic Targets, 2019, 23, 669-678.	3.4	32
52	Effect of pulsed electromagnetic field exposure on adenosine receptors in rat brain. Bioelectromagnetics, 2012, 33, 279-287.	1.6	31
53	Scouting Human A3 Adenosine Receptor Antagonist Binding Mode Using a Molecular Simplification Approach: From Triazoloquinoxaline to a Pyrimidine Skeleton as a Key Study. Journal of Medicinal Chemistry, 2007, 50, 6596-6606.	6.4	30
54	A2A adenosine receptor upregulation correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Research and Therapy, 2016, 18, 192.	3.5	30

#	Article	IF	CITATIONS
55	The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A2B receptor. European Journal of Medicinal Chemistry, 2018, 150, 127-139.	5.5	30
56	A Novel Conjugated Agent between Dopamine and an A _{2A} Adenosine Receptor Antagonist as a Potential Anti-Parkinson Multitarget Approach. Molecular Pharmaceutics, 2012, 9, 591-604.	4.6	29
57	Synthesis and Biological Evaluation of 2-Amino-3-(4-chlorobenzoyl)-4-[(4-arylpiperazin-1-yl)methyl]-5-substituted-thiophenes. Effect of the 5-Modification on Allosteric Enhancer Activity at the A1 Adenosine Receptor. Journal of Medicinal Chemistry, 2012, 55, 7719-7735.	6.4	27
58	Synthesis and Biological Evaluation of Novel Allosteric Enhancers of the A ₁ Adenosine Receptor Based on 2-Amino-3-(4′-Chlorobenzoyl)-4-Substituted-5-Arylethynyl Thiophene. Journal of Medicinal Chemistry, 2014, 57, 7673-7686.	6.4	26
59	Pulsed electromagnetic field and relief of hypoxiaâ€induced neuronal cell death: The signaling pathway. Journal of Cellular Physiology, 2019, 234, 15089-15097.	4.1	25
60	2-Arylpyrazolo[4,3- <i>d</i>]pyrimidin-7-amino Derivatives As New Potent and Selective Human A ₃ Adenosine Receptor Antagonists. Molecular Modeling Studies and Pharmacological Evaluation. Journal of Medicinal Chemistry, 2013, 56, 2256-2269.	6.4	24
61	Discovery of 7-Oxopyrazolo[1,5- <i>a</i>]pyrimidine-6-carboxamides as Potent and Selective CB ₂ Cannabinoid Receptor Inverse Agonists. Journal of Medicinal Chemistry, 2013, 56, 4482-4496.	6.4	24
62	A2Aadenosine receptors and Parkinson's disease severity. Acta Neurologica Scandinavica, 2014, 129, 276-281.	2.1	23
63	Exploring the 7-oxo-thiazolo[5,4-d]pyrimidine core for the design of new human adenosine A3 receptor antagonists. Synthesis, molecular modeling studies and pharmacological evaluation. European Journal of Medicinal Chemistry, 2015, 96, 105-121.	5.5	23
64	Deficiency of polycystic kidney disease-1 gene (PKD1) expression increases A3 adenosine receptors in human renal cells: Implications for cAMP-dependent signalling and proliferation of PKD1-mutated cystic cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 531-540.	3.8	22
65	7-Amino-2-phenylpyrazolo [4,3-d] pyrimidine derivatives: Structural investigations at the 5-position to target human A1 and A2A adenosine receptors. Molecular modeling and pharmacological studies. European Journal of Medicinal Chemistry, 2014, 84, 614-627.	5.5	22
66	Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease. Neurobiology of Disease, 2014, 71, 193-204.	4.4	22
67	Novel potent and highly selective human A3 adenosine receptor antagonists belonging to the 4-amido-2-arylpyrazolo[3,4-c]quinoline series: Molecular docking analysis and pharmacological studies. Bioorganic and Medicinal Chemistry, 2009, 17, 401-410.	3.0	21
68	Synthesis, structure–affinity relationships, and molecular modeling studies of novel pyrazolo[3,4-c]quinoline derivatives as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2011, 19, 3757-3768.	3.0	21
69	Upregulation of Cortical A2A Adenosine Receptors Is Reflected in Platelets of Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 80, 1105-1117.	2.6	21
70	Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells, 2022, 11, 471.	4.1	21
71	Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 1219.	4.1	20
72	Structural refinement of pyrazolo [4,3- d] pyrimidine derivatives to obtain highly potent and selective antagonists for the human A 3 adenosine receptor. European Journal of Medicinal Chemistry, 2016, 108, 117-133.	5.5	18

#	Article	IF	Citations
73	Adenosine A2A receptor inhibition reduces synaptic and cognitive hippocampal alterations in Fmr1 KO mice. Translational Psychiatry, 2021, 11, 112.	4.8	18
74	A _{2A} Adenosine Receptor Antagonists in Neurodegenerative Diseases. Current Medicinal Chemistry, 2022, 29, 4138-4151.	2.4	18
75	Synthesis and biological effects of novel 2-amino-3-(4-chlorobenzoyl)-4-substituted thiophenes as allosteric enhancers of Athe A1 adenosine receptor. European Journal of Medicinal Chemistry, 2013, 67, 409-427.	5.5	17
76	Imidazo[1,2-a]pyrazin-8-amine core for the design of new adenosine receptor antagonists: Structural exploration to target the A3 and A2A subtypes. European Journal of Medicinal Chemistry, 2017, 125, 611-628.	5. 5	17
77	Pathophysiological Role and Medicinal Chemistry of A2A Adenosine Receptor Antagonists in Alzheimer's Disease. Molecules, 2022, 27, 2680.	3.8	17
78	Design, Synthesis, and Pharmacological Properties of New Heteroarylpyridine/Heteroarylpyrimidine Derivatives as CB ₂ Cannabinoid Receptor Partial Agonists. Journal of Medicinal Chemistry, 2013, 56, 1098-1112.	6.4	16
79	RAW 264.7 coâ€cultured with ultraâ€high molecular weight polyethylene particles spontaneously differentiate into osteoclasts: an ⟨i⟩in vitro⟨ i⟩ model of periprosthetic osteolysis. Journal of Biomedical Materials Research - Part A, 2017, 105, 510-520.	4.0	16
80	Modifications on the Amino-3,5-dicyanopyridine Core To Obtain Multifaceted Adenosine Receptor Ligands with Antineuropathic Activity. Journal of Medicinal Chemistry, 2019, 62, 6894-6912.	6.4	16
81	P2X ₁ and P2X ₃ Purinergic Receptors Differentially Modulate the Inflammatory Response in Human Osteoarthritic Synovial Fibroblasts. Cellular Physiology and Biochemistry, 2010, 25, 325-336.	1.6	15
82	Oxidative/nitrosative stress selectively altered A _{2B} adenosine receptors in chronic obstructive pulmonary disease. FASEB Journal, 2010, 24, 1192-1204.	0.5	15
83	Design, Synthesis, and Biological Evaluation of Novel 2-((2-(4-(Substituted)phenylpiperazin-1-yl)ethyl)amino)-5′- <i>N</i> -ethylcarboxamidoadenosines as Potent and Selective Agonists of the A _{2A} Adenosine Receptor. Journal of Medicinal Chemistry, 2015, 58, 3253-3267.	6.4	15
84	An Open Question: Is the A2A Adenosine Receptor a Novel Target for Alzheimer's Disease Treatment?. Frontiers in Pharmacology, 2021, 12, 652455.	3.5	15
85	A2A Adenosine Receptor as a Potential Biomarker and a Possible Therapeutic Target in Alzheimer's Disease. Cells, 2021, 10, 2344.	4.1	15
86	Synthesis and biological characterization of [3H] (2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)-(4-chlorophenyl)-methanone, the first radiolabelled adenosine A1 allosteric enhancer. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1402-1404.	2.2	14
87	Structure–activity relationships of 2-amino-3-aroyl-4-[(4-arylpiperazin-1-yl)methyl]thiophenes. Part 2: Probing the influence of diverse substituents at the phenyl of the arylpiperazine moiety on allosteric enhancer activity at the A1 adenosine receptor. Bioorganic and Medicinal Chemistry, 2012, 20, 996-1007.	3.0	14
88	Exploring the 2- and 5-positions of the pyrazolo [4,3-d] pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors. Bioorganic and Medicinal Chemistry, 2016, 24, 2794-2808.	3.0	14
89	The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3- <i>d</i>)pyrimidine core in affecting adenosine A ₁ and A _{2A} receptor affinity and selectivity profiles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 248-263.	5.2	14
90	Effects of pulsed electromagnetic fields and platelet rich plasma in preventing osteoclastogenesis in an in vitro model of osteolysis. Journal of Cellular Physiology, 2018, 233, 2645-2656.	4.1	14

#	Article	IF	CITATIONS
91	Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists. Bioorganic and Medicinal Chemistry, 2018, 26, 3688-3695.	3.0	14
92	Anxiolytic properties of A1 adenosine receptor PAMs. Oncotarget, 2017, 8, 7216-7217.	1.8	14
93	Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A 1 adenosine receptor. A position-dependent effect study. European Journal of Medicinal Chemistry, 2015, 101, 185-204.	5 . 5	13
94	A3 Adenosine and P2X7 Purinergic Receptors as New Targets for an Innovative Pharmacological Therapy of Malignant Pleural Mesothelioma. Frontiers in Oncology, 2021, 11, 679285.	2.8	13
95	Synthesis and biological evaluation of novel 2-amino-3-aroyl-4-neopentyl-5-substituted thiophene derivatives as allosteric enhancers of the A1 adenosine receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 148-166.	3.0	12
96	Structure-activity relationship studies and pharmacological characterization of N5-heteroarylalkyl-substituted-2-(2-furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine-based derivatives as inverse agonists at human A2A adenosine receptor. European Journal of Medicinal Chemistry, 2018, 155, 552-561.	5 . 5	12
97	The Detrimental Action of Adenosine on Glutamate-Induced Cytotoxicity in PC12 Cells Can Be Shifted towards a Neuroprotective Role through A1AR Positive Allosteric Modulation. Cells, 2020, 9, 1242.	4.1	12
98	Structural investigation on thiazolo[5,4-d]pyrimidines to obtain dual-acting blockers of CD73 and adenosine A2A receptor as potential antitumor agents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127067.	2.2	12
99	Piperazine- and Piperidine-Containing Thiazolo [5,4-d] pyrimidine Derivatives as New Potent and Selective Adenosine A2A Receptor Inverse Agonists. Pharmaceuticals, 2020, 13, 161.	3.8	11
100	Azetidin-2-one-based small molecules as dual hHDAC6/HDAC8 inhibitors: Investigation of their mechanism of action and impact of dual inhibition profile on cell viability. European Journal of Medicinal Chemistry, 2022, 238, 114409.	5 . 5	11
101	Signaling pathways involved in anti-inflammatory effects of Pulsed Electromagnetic Field in microglial cells. Cytokine, 2020, 125, 154777.	3.2	10
102	Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection After Acute Cerebral Ischemia. Neuromodulation, 2022, 25, 1240-1247.	0.8	10
103	Binding thermodynamic characterization of human P2X1 and P2X3 purinergic receptors. Biochemical Pharmacology, 2008, 75, 1198-1208.	4.4	9
104	One-Pot Reaction To Obtain N,N′-Disubstituted Guanidines of Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine Scaffold as Human A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2015, 58, 5355-5360.	6.4	9
105	Amino-3,5-Dicyanopyridines Targeting the Adenosine Receptors. Ranging from Pan Ligands to Combined A1/A2B Partial Agonists. Pharmaceuticals, 2019, 12, 159.	3.8	9
106	Pulsed Electromagnetic Fields Stimulate HIF- $1\hat{i}$ ±-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-like SH-SY5Y Cells from Oxygen-Glucose Deprivation. International Journal of Molecular Sciences, 2020, 21, 8053.	4.1	9
107	I-DOPA promotes striatal dopamine release through D1 receptors and reversal of dopamine transporter. Brain Research, 2021, 1768, 147583.	2.2	9
108	A2A Adenosine Receptor: A Possible Therapeutic Target for Alzheimer's Disease by Regulating NLRP3 Inflammasome Activity?. International Journal of Molecular Sciences, 2022, 23, 5056.	4.1	9

#	Article	IF	CITATIONS
109	A1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic?. Frontiers in Pharmacology, 2020, 11, 625134.	3.5	8
110	Adenosinergic System Involvement in Ischemic Stroke Patients' Lymphocytes. Cells, 2020, 9, 1072.	4.1	7
111	Adenosine and adenosine receptors in rheumatoid arthritis. International Journal of Clinical Rheumatology, 2013, 8, 13-25.	0.3	5
112	Dopamine Transporter, PhosphoSerine129 α-Synuclein and α-Synuclein Levels in Aged LRRK2 G2019S Knock-In and Knock-Out Mice. Biomedicines, 2022, 10, 881.	3.2	5
113	Repeated Dosing with NCX1404, a Nitric Oxide-Donating Pregabalin, Re-establishes Normal Nociceptive Responses in Mice with Streptozotocin-Induced Painful Diabetic Neuropathy. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 240-247.	2.5	4
114	Development of novel pyridazinone-based adenosine receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1484-1489.	2.2	4
115	4-Heteroaryl Substituted Amino-3,5-Dicyanopyridines as New Adenosine Receptor Ligands: Novel Insights on Structure-Activity Relationships and Perspectives. Pharmaceuticals, 2022, 15, 478.	3.8	4
116	Behavioral and binding studies on the quinolinyl ester indoles 5F-PB22 (5F-QUPIC) and BB-22 (QUCHIC) in the mouse model. Emerging Trends in Drugs, Addictions, and Health, 2022, 2, 100039.	1.1	4
117	A2A adenosine receptors are involved in the reparative response of tendon cells to pulsed electromagnetic fields. PLoS ONE, 2020, 15, e0239807.	2.5	2
118	Role of Adenosine Receptors in Clinical Biophysics Based on Pulsed Electromagnetic Fields. , 2018, , 557-580.		1
119	Binding Thermodynamic Characteristics of Adenosine Receptor Ligands. , 2018, , 199-215.		1