
Tonghui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nature Materials, 2018, 17, 253-260.	27.5	556
2	Charge-transfer electronic states inÂorganic solar cells. Nature Reviews Materials, 2019, 4, 689-707.	48.7	229
3	Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications, 2022, 13, 2598.	12.8	113
4	Computational Methodologies for Developing Structure–Morphology–Performance Relationships in Organic Solar Cells: A Protocol Review. Chemistry of Materials, 2017, 29, 346-354.	6.7	61
5	Chargeâ€Transfer States at Organic–Organic Interfaces: Impact of Static and Dynamic Disorders. Advanced Energy Materials, 2019, 9, 1803926.	19.5	54
6	Impact of the Nature of the Sideâ€Chains on the Polymerâ€Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2016, 26, 5913-5921.	14.9	45
7	Organic Photovoltaics: Relating Chemical Structure, Local Morphology, and Electronic Properties. Trends in Chemistry, 2020, 2, 535-554.	8.5	43
8	Organic Photovoltaics: Understanding the Preaggregation of Polymer Donors in Solution and Its Morphological Impact. Journal of the American Chemical Society, 2021, 143, 1822-1835.	13.7	39
9	Resolving Atomicâ€Scale Interactions in Nonfullerene Acceptor Organic Solar Cells with Solidâ€State NMR Spectroscopy, Crystallographic Modelling, and Molecular Dynamics Simulations. Advanced Materials, 2022, 34, e2105943.	21.0	36
10	Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2016, 28, 8181-8189.	6.7	34
11	Organic Solar Cells Based on Non-fullerene Small-Molecule Acceptors: Impact of Substituent Position. Matter, 2020, 2, 119-135.	10.0	32
12	Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer–Fullerene Mixing and Packing and on the Fullerene–Fullerene Connecting Network. Advanced Functional Materials, 2018, 28, 1705868.	14.9	30
13	Suppressing Energy Loss due to Triplet Exciton Formation in Organic Solar Cells: The Role of Chemical Structures and Molecular Packing. Advanced Energy Materials, 2017, 7, 1602713.	19.5	28
14	All-Polymer Solar Cells: Impact of the Length of the Branched Alkyl Side Chains on the Polymer Acceptors on the Interchain Packing and Electronic Properties in Amorphous Blends. Chemistry of Materials, 2019, 31, 6239-6248.	6.7	26
15	Impact of solution temperature-dependent aggregation on the solid-state packing and electronic properties of polymers for organic photovoltaics. Journal of Materials Chemistry C, 2018, 6, 13162-13170.	5.5	25
16	Nonfullerene Smallâ€Molecule Acceptors for Organic Photovoltaics: Understanding the Impact of Methoxy Substitution Position on Molecular Packing and Electronâ€Transfer Properties. Advanced Functional Materials, 2019, 29, 1806845.	14.9	22
17	Quantumâ€Chemical Evaluation of Impact of Chlorination versus Fluorination on the Electronic Properties of Donors and Acceptors for Organic Solar Cells. Advanced Theory and Simulations, 2019, 2, 1900136.	2.8	10
18	Bulk Heterojunction Solar Cells: Insight into Ternary Blends from a Characterization of the Intermolecular Packing and Electronic Properties in the Corresponding Binary Blends. Advanced Theory and Simulations, 2020, 3, 2000049.	2.8	3

#	Article	IF	CITATIONS
19	Resolving atomic-scale interactions in non-fullerene acceptor organic solar cells by high-field NMR crystallography. , 0, , .		0