Maria de Lourdes Polizeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4802079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 2005, 67, 577-591.	3.6	1,081
2	β-Glucosidase activity from the thermophilic fungus∢i>Scytalidium thermophilum∢/i>is stimulated by glucose and xylose. FEMS Microbiology Letters, 2004, 240, 137-143.	1.8	122
3	Purification and properties of a thermostable extracellular ?- D -xylosidase produced by a thermotolerant Aspergillus phoenicis. Journal of Industrial Microbiology and Biotechnology, 2001, 26, 156-160.	3.0	121
4	Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: Study of degradation patterns and saccharification kinetics. Chemical Engineering Journal, 2014, 258, 240-246.	12.7	121
5	Trehalases and trehalose hydrolysis in fungi. FEMS Microbiology Letters, 2006, 154, 165-171.	1.8	105
6	Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules, 2020, 25, 3411.	3.8	101
7	Endophytic fungi: expanding the arsenal of industrial enzyme producers. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1467-1478.	3.0	91
8	Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochemistry, 2005, 40, 1823-1828.	3.7	87
9	Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresource Technology, 2016, 199, 275-278.	9.6	87
10	Screening of filamentous fungi for production of enzymes of biotechnological interest. Brazilian Journal of Microbiology, 2006, 37, 474-480.	2.0	84
11	Production and characterization of a thermostable extracellular Î ² -d-fructofuranosidase produced by Aspergillus ochraceus with agroindustrial residues as carbon sources. Enzyme and Microbial Technology, 2007, 42, 52-57.	3.2	79
12	A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Science of the Total Environment, 2018, 634, 1346-1351.	8.0	78
13	Studies on a thermostable α-amylase from the thermophilic fungus Scytalidium thermophilum. Applied Microbiology and Biotechnology, 2003, 61, 323-328.	3.6	71
14	Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess and Biosystems Engineering, 2009, 32, 819-824.	3.4	65
15	Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii. Carbohydrate Research, 2010, 345, 2348-2353.	2.3	60
16	A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnology for Biofuels, 2014, 7, 115.	6.2	60
17	Editorial: Microbial Secondary Metabolites: Recent Developments and Technological Challenges. Frontiers in Microbiology, 2019, 10, 914.	3.5	57
18	Production of β-fructofuranosidases by Aspergillus niveus using agroindustrial residues as carbon sources: Characterization of an intracellular enzyme accumulated in the presence of glucose. Process Biochemistry, 2009, 44, 237-241.	3.7	52

#	Article	IF	CITATIONS
19	Engineering Bifunctional Laccase-Xylanase Chimeras for Improved Catalytic Performance. Journal of Biological Chemistry, 2011, 286, 43026-43038.	3.4	52
20	Effect of carbon source on the biochemical properties of β-xylosidases produced by Aspergillus versicolor. Process Biochemistry, 2004, 39, 1931-1938.	3.7	50
21	Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochemistry, 2011, 46, 1236-1242.	3.7	50
22	Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Brazilian Journal of Microbiology, 2009, 40, 612-622.	2.0	49
23	Rhizopus microsporus var. rhizopodiformis : a thermotolerant fungus with potential for production of thermostable amylases. International Microbiology, 2003, 6, 269-273.	2.4	48
24	Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 17-25.	3.0	47
25	Functional characterization and oligomerization of a recombinant xyloglucan-specific endo-β-1,4-glucanase (GH12) from Aspergillus niveus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 461-467.	2.3	45
26	Trametes versicolor laccase production using agricultural wastes: a comparative study in Erlenmeyer flasks, bioreactor and tray. Bioprocess and Biosystems Engineering, 2020, 43, 507-514.	3.4	44
27	Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars. Bioresource Technology, 2018, 247, 582-590.	9.6	41
28	Fungal communities differentially respond to warming and drought in tropical grassland soil. Molecular Ecology, 2020, 29, 1550-1559.	3.9	41
29	Influence of volumetric oxygen transfer coefficient (kLa) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochemical Engineering Journal, 2013, 80, 19-26.	3.6	40
30	Bioprocess and biotechnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. SpringerPlus, 2013, 2, 380.	1.2	40
31	Thermostable glucose-tolerant glucoamylase produced by the thermophilic fungusScytalidium thermophilum. Folia Microbiologica, 2001, 46, 11-16.	2.3	39
32	Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 149-155.	3.0	39
33	Extracellular β― <scp>D</scp> â€glucosidase from <i>Chaetomium thermophilum</i> var. <i>coprophilum</i> : production, purification and some biochemical properties. Journal of Basic Microbiology, 2002, 42, 55-66.	3.3	37
34	Production of fibrolytic enzymes by Aspergillus japonicus CO3 using agro-industrial residues with potential application as additives in animal feed. Bioprocess and Biosystems Engineering, 2011, 34, 347-355.	3.4	37
35	Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess and Biosystems Engineering, 2012, 35, 1185-1192.	3.4	35
36	Purification and Partial Characterization of an Exo-polygalacturonase from Paecilomyces variotii Liquid Cultures. Applied Biochemistry and Biotechnology, 2010, 160, 1496-1507.	2.9	34

#	Article	IF	CITATIONS
37	Properties of a purified thermostable glucoamylase from Aspergillus niveus. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1439-1446.	3.0	32
38	Biotechnological Potential of Agro-Industrial Wastes as a Carbon Source to Thermostable Polygalacturonase Production in <i>Aspergillus niveus</i> . Enzyme Research, 2011, 2011, 1-6.	1.8	32
39	Purification and functional properties of a novel glucoamylase activated by manganese and lead produced by Aspergillus japonicus. International Journal of Biological Macromolecules, 2017, 102, 779-788.	7.5	32
40	Production and properties of xylanases from Aspergillus terricola Marchal and Aspergillus ochraceus and their use in cellulose pulp bleaching. Bioprocess and Biosystems Engineering, 2010, 33, 813-821.	3.4	31
41	Xylanase and β-Xylosidase Production by Aspergillus ochraceus: New Perspectives for the Application of Wheat Straw Autohydrolysis Liquor. Applied Biochemistry and Biotechnology, 2012, 166, 336-347.	2.9	30
42	Influence of temperature on the properties of the xylanolytic enzymes of the thermotolerant fungus Aspergillus phoenicis. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 88-93.	3.0	29
43	Thermostable conidial and mycelial alkaline phosphatases from the thermophilic fungus Scytalidium thermophilum. Journal of Industrial Microbiology and Biotechnology, 2001, 27, 265-270.	3.0	28
44	A novel glucoamylase activated by manganese and calcium produced in submerged fermentation by <i>Aspergillus phoenicis</i> . Journal of Basic Microbiology, 2014, 54, 333-339.	3.3	28
45	Challenges of Biomass Utilization for Bioenergy in a Climate Change Scenario. Biology, 2021, 10, 1277.	2.8	27
46	Glucoamylase activity from the thermophilic fungusScytalidium thermophilum. Biochemical and regulatory properties. Journal of Basic Microbiology, 2000, 40, 83-92.	3.3	26
47	Biochemical properties of glycosylation and characterization of a histidine acid phosphatase (phytase) expressed in Pichia pastoris. Protein Expression and Purification, 2014, 99, 43-49.	1.3	26
48	Characterization and properties of acid phosphatases with phytase activity produced by Aspergillus caespitosus. Biotechnology and Applied Biochemistry, 2004, 40, 201.	3.1	25
49	Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1979-1984.	3.0	25
50	Enhanced xyloglucan-specific endo-β-1,4-glucanase efficiency in an engineered CBM44-XegA chimera. Applied Microbiology and Biotechnology, 2015, 99, 5095-5107.	3.6	25
51	A novel α-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: Purification and partial characterisation of the enzyme. Process Biochemistry, 2006, 41, 1729-1735.	3.7	24
52	Immobilization and biochemical properties of a Î ² -xylosidase activated by glucose/xylose from Aspergillus niger USP-67 with transxylosylation activity. Journal of Molecular Catalysis B: Enzymatic, 2013, 89, 93-101.	1.8	24
53	Immobilization and high stability of an extracellular β-glucosidase from Aspergillus japonicus by ionic interactions. Journal of Molecular Catalysis B: Enzymatic, 2014, 104, 95-100.	1.8	24
54	Immobilized endo-xylanase of Aspergillus tamarii Kita: an interesting biological tool for production of xylooligosaccharides at high temperatures. Process Biochemistry, 2017, 53, 145-152.	3.7	24

#	Article	IF	CITATIONS
55	Characterization of trehalase activities from the thermophilic fungus Scytalidium thermophilum. Biochimica Et Biophysica Acta - General Subjects, 1996, 1291, 199-205.	2.4	23
56	Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: Determination of thermal and organic solvent stabilities for applications in the oleochemical industry. Process Biochemistry, 2015, 50, 561-570.	3.7	23
57	Stabilization of the lipase of Hypocrea pseudokoningii by multipoint covalent immobilization after chemical modification and application of the biocatalyst in oil hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2015, 121, 82-89.	1.8	23
58	Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment. Frontiers in Microbiology, 2016, 7, 583.	3.5	23
59	Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess and Biosystems Engineering, 2008, 31, 329-334.	3.4	22
60	Effect of glycosylation on the biochemical properties of β-xylosidases from Aspergillus versicolor. Journal of Microbiology, 2009, 47, 270-276.	2.8	22
61	Screening of filamentous fungi for lipase production:Hypocrea pseudokoningiia new producer with a high biotechnological potential. Biocatalysis and Biotransformation, 2014, 32, 74-83.	2.0	22
62	Purification and biochemical characterization of a novel α-glucosidase from Aspergillus niveus. Antonie Van Leeuwenhoek, 2009, 96, 569-578.	1.7	21
63	Novel amylase-producing fungus hydrolyzing wheat and brewing residues, Aspergillus carbonarius, discovered in tropical forest remnant. Folia Microbiologica, 2020, 65, 173-184.	2.3	21
64	Stimulation of hyphal growth in anaerobic cultures ofMucor rouxiiby extracellular trehalose. Relevance of cell wall-bound activity of acid trehalase for trehalose utilization. FEMS Microbiology Letters, 2000, 182, 9-13.	1.8	19
65	Acid and alkaline phosphatase activities of a fraction isolated from Parawixia bistriata spider venom. Toxicon, 2006, 47, 854-858.	1.6	19
66	A Highly Glucose Tolerant ß-Glucosidase from Malbranchea pulchella (MpBg3) Enables Cellulose Saccharification. Scientific Reports, 2020, 10, 6998.	3.3	19
67	Effects of temperature shifts on the activities ofNeurospora crassaglycogen synthase, glycogen phosphorylase and trehalose-6-phosphate synthase. FEBS Letters, 1996, 378, 32-36.	2.8	18
68	Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids. ACS Applied Materials & Interfaces, 2015, 7, 18832-18842.	8.0	18
69	Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella β-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. International Journal of Biological Macromolecules, 2019, 136, 1133-1141.	7.5	18
70	Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Brazilian Journal of Microbiology, 2009, 40, 612-22.	2.0	18
71	Optimization of fibrolytic enzyme production by Aspergillus japonicus C03 with potential application in ruminant feed and their effects on tropical forages hydrolysis. Bioprocess and Biosystems Engineering, 2011, 34, 1027-1038.	3.4	17
72	Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis. Frontiers in Microbiology, 2015, 6, 1083.	3.5	17

#	Article	IF	CITATIONS
73	The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Applied Microbiology and Biotechnology, 2016, 100, 9133-9144.	3.6	17
74	Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose, 2017, 24, 4355-4365.	4.9	17
75	Sunflower stalk as a carbon source inductive for fungal xylanase production. Industrial Crops and Products, 2020, 153, 112368.	5.2	17
76	A Halotolerant Endo-1,4-β-Xylanase from Aspergillus clavatus with Potential Application for Agroindustrial Residues Saccharification. Applied Biochemistry and Biotechnology, 2020, 191, 1111-1126.	2.9	17
77	A novel xylan degrading β-d-xylosidase: purification and biochemical characterization. World Journal of Microbiology and Biotechnology, 2012, 28, 3179-3186.	3.6	16
78	Purification, partial characterization, and covalent immobilization–stabilization of an extracellular α-amylase from Aspergillus niveus. Folia Microbiologica, 2013, 58, 495-502.	2.3	16
79	Production of Omegas-6 and 9 from the Hydrolysis of AçaÃ-and Buriti Oils by Lipase Immobilized on a Hydrophobic Support. Molecules, 2018, 23, 3015.	3.8	16
80	Bioinspired architecture of a hybrid bifunctional enzymatic/organic electrocatalyst for complete ethanol oxidation. Bioelectrochemistry, 2019, 130, 107331.	4.6	16
81	Characterisation of free and immobilised laccases from <i>Ganoderma lucidum</i> : application on bisphenol a degradation. Biocatalysis and Biotransformation, 2021, 39, 71-80.	2.0	16
82	Prospection of Fungal Lignocellulolytic Enzymes Produced from Jatoba (Hymenaea courbaril) and Tamarind (Tamarindus indica) Seeds: Scaling for Bioreactor and Saccharification Profile of Sugarcane Bagasse. Microorganisms, 2021, 9, 533.	3.6	16
83	Cellulose from Lignocellulosic Waste. , 2015, , 475-511.		16
84	Function and regulation of the acid and neutral trehalases of Mucor rouxii. FEMS Microbiology Letters, 1997, 155, 73-77.	1.8	15
85	Cyclodextrin glycosyltransferase from Bacillus licheniformis: optimization of production and its properties. Brazilian Journal of Microbiology, 2006, 37, 317-323.	2.0	15
86	Biotechnological potential of alternative carbon sources for production of pectinases by Rhizopus microsporus var. rhizopodiformis. Brazilian Archives of Biology and Technology, 2011, 54, 141-148.	0.5	15
87	Potential biodiesel production from Brazilian plant oils and spent coffee grounds by Beauveria bassiana lipase 1 expressed in Aspergillus nidulans A773 using different agroindustry inputs. Journal of Cleaner Production, 2020, 256, 120513.	9.3	15
88	Functional properties of a manganese-activated exo-polygalacturonase produced by a thermotolerant fungus Aspergillus niveus. Folia Microbiologica, 2013, 58, 615-621.	2.3	14
89	Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors. Chemical Papers, 2015, 69, .	2.2	14
90	Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus <i> Rhizomucor pusillus</i> A13.36 Obtained by Submerged Cultivation. BioMed Research International, 2016, 2016, 1-10.	1.9	14

#	Article	IF	CITATIONS
91	Bioprospection and characterization of the amylolytic activity by filamentous fungi from Brazilian Atlantic Forest. Biota Neotropica, 2017, 17, .	1.0	14
92	Regulation of pectic enzymes from theexo-1 mutant strain ofNeurospora crassa: effects of glucose, galactose, and galacturonic acid. Journal of Basic Microbiology, 1998, 38, 181-188.	3.3	13
93	Regulation of xylanase in Aspergillus phoenicis: a physiological and molecular approach. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 237-244.	3.0	13
94	Purification and biochemical characterization of glucose–cellobiose-tolerant cellulases from Scytalidium thermophilum. Folia Microbiologica, 2013, 58, 561-568.	2.3	13
95	Increase of the phytase production by <i>Aspergillus japonicus</i> and its biocatalyst potential on chicken feed treatment. Journal of Basic Microbiology, 2014, 54, S152-60.	3.3	13
96	Purification and Biochemical Properties of Multiple Xylanases from Aspergillus ochraceus Tolerant to Hg2+ Ion and a Wide Range of pH. Applied Biochemistry and Biotechnology, 2014, 174, 206-220.	2.9	13
97	The profile secretion of Aspergillus clavatus: Different pre-treatments of sugarcane bagasse distinctly induces holocellulases for the lignocellulosic biomass conversion into sugar. Renewable Energy, 2021, 165, 748-757.	8.9	13
98	Characterization of multiple xylanase forms from Aspergillus tamarii resistant to phenolic compounds. Mycosphere, 2016, 7, 1554-1567.	6.1	13
99	Extracellular alkaline phosphatase from the filamentous fungusAspergillus caespitosus: Purification and biochemical characterization. Folia Microbiologica, 2003, 48, 627-632.	2.3	12
100	Improvement of fungal arabinofuranosidase thermal stability by reversible immobilization. Process Biochemistry, 2012, 47, 2411-2417.	3.7	12
101	Co-immobilization of fungal endo-xylanase and Â-L-arabinofuranosidase in glyoxyl agarose for improved hydrolysis of arabinoxylan. Journal of Biochemistry, 2013, 154, 275-280.	1.7	12
102	Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production. Brazilian Journal of Microbiology, 2014, 45, 1459-1467.	2.0	12
103	Characterization of a conidial alkaline phosphatase from the thermophilic fungusHumicola grisea var.thermoidea. Journal of Basic Microbiology, 1998, 38, 85-94.	3.3	11
104	Effect of carbon source on alkaline phosphatase production and excretion in Aspergillus caespitosus. Journal of Basic Microbiology, 2003, 43, 210-217.	3.3	11
105	The fungal metabolite eugenitin as additive for Aspergillus niveus glucoamylase activation. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 156-161.	1.8	11
106	Characterization of galactose-induced extracellular and intracellular pectolytic activities from the exo -1 mutant strain of Neurospora crassa. Journal of Industrial Microbiology and Biotechnology, 1998, 20, 238-243.	3.0	10
107	Biochemical characterisation of the trehalase of thermophilic fungi: An enzyme with mixed properties of neutral and acid trehalase. Biochimica Et Biophysica Acta - General Subjects, 2005, 1723, 201-207.	2.4	10
108	Use of Cassava Peel as Carbon Source for Production of Amylolytic Enzymes by Aspergillus niveus. International Journal of Food Engineering, 2009, 5, .	1.5	10

#	Article	IF	CITATIONS
109	Production of cellulase-free xylanase by Aspergillus flavus: Effect of polyols on the thermostability and its application on cellulose pulp biobleaching. African Journal of Biotechnology, 2015, 14, 3368-3373.	0.6	10
110	Fungal Lipases: Versatile Tools for White Biotechnology. Fungal Biology, 2019, , 361-404.	0.6	10
111	Fungal Community Ecology Using MALDI-TOF MS Demands Curated Mass Spectral Databases. Frontiers in Microbiology, 2019, 10, 315.	3.5	10
112	Enzymatic Pretreatment with Laccases from Lentinus sajor-caju Induces Structural Modification in Lignin and Enhances the Digestibility of Tropical Forage Grass (Panicum maximum) Grown under Future Climate Conditions. International Journal of Molecular Sciences, 2021, 22, 9445.	4.1	10
113	Purification and biochemical characterization of ?-xylosidase from var. thermoidea. FEMS Microbiology Letters, 1995, 130, 171-175.	1.8	9
114	Purification and biochemical characterization of thermostable alkaline phosphatases produced by Rhizopus microsporus var. rhizopodiformis. Folia Microbiologica, 2008, 53, 509-516.	2.3	9
115	Biochemical properties of an extracellular trehalase from Malbranchea pulchella var. Sulfurea. Journal of Microbiology, 2011, 49, 809-815.	2.8	9
116	Effects of <i>Aspergillus</i> spp. exogenous fibrolytic enzymes on <i>in vitro</i> fermentation of tropical forages. Journal of the Science of Food and Agriculture, 2012, 92, 2569-2573.	3.5	9
117	Mixture design of starchy substrates hydrolysis by an immobilized glucoamylase from <i>Aspergillus brasiliensis</i> . Biocatalysis and Biotransformation, 2018, 36, 389-395.	2.0	9
118	Saccharification of different sugarcane bagasse varieties by enzymatic cocktails produced by Mycothermus thermophilus and Trichoderma reesei RP698 cultures in agro-industrial residues. Energy, 2021, 226, 120360.	8.8	9
119	Mobilisation of trehalose in mutants of the cyclic AMP signalling pathway, cr-1 (CRISP-1) and mcb (microcycle conidiation), of Neurospora crassa. FEMS Microbiology Letters, 2001, 199, 85-89.	1.8	8
120	Tunicamycin inhibition of N-glycosylation of $\hat{l}\pm$ -glucosidase from Aspergillus niveus: partial influence on biochemical properties. Biotechnology Letters, 2010, 32, 1449-1455.	2.2	8
121	Partial Purification and Characterization of a Thermostable β-Mannanase from Aspergillus foetidus. Applied Sciences (Switzerland), 2015, 5, 881-893.	2.5	8
122	Mycelial glucoamylases produced by the thermophilic fungus Scytalidium thermophilum strains 15.1 and 15.8: purification and biochemical characterization. Brazilian Journal of Microbiology, 2008, 39, 344-352.	2.0	7
123	Production and action of an Aspergillus phoenicis enzymatic pool using different carbon sources. Brazilian Journal of Food Technology, 2012, 15, 253-260.	0.8	7
124	Enzymes Involved in the Biodegradation of Sugarcane Biomass: Challenges and Perspectives. , 2017, , 55-79.		7
125	Neosartorya glabra polygalacturonase produced from fruit peels as inducers has the potential for application in passion fruit and apple juices. Brazilian Journal of Food Technology, 2017, 20, .	0.8	7
126	Holocellulase production by filamentous fungi: potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Conversion and Biorefinery, 2023, 13, 1163-1174.	4.6	7

#	Article	IF	CITATIONS
127	Screening and cocktail optimization using experimental mixture design: enzymatic saccharification as a biological pretreatment strategy. Biofuels, Bioproducts and Biorefining, 2021, 15, 1447-1460.	3.7	7
128	Prospection of Psychrotrophic Filamentous Fungi Isolated from the High Andean Paramo Region of Northern Ecuador: Enzymatic Activity and Molecular Identification. Microorganisms, 2022, 10, 282.	3.6	7
129	Characterisation of an acid trehalase produced by the thermotolerant fungusRhizopus microsporusvar.rhizopodiformis: Biochemical properties and immunochemical localisation. FEMS Microbiology Letters, 2005, 251, 169-175.	1.8	6
130	Purification and biochemical characterization of a mycelial alkaline phosphatase without DNAase activity produced byAspergillus caespitosus. Folia Microbiologica, 2007, 52, 231-6.	2.3	6
131	Increased biomass saccharification by supplementation of a commercial enzyme cocktail with endo-arabinanase from Bacillus licheniformis. Biotechnology Letters, 2015, 37, 1455-1462.	2.2	6
132	Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii. Molecules, 2017, 22, 1448.	3.8	6
133	Prospecting of soybean hulls as an inducer carbon source for the cellulase production. Preparative Biochemistry and Biotechnology, 2018, 48, 743-749.	1.9	6
134	Biochemical traits useful for the determination of genetic variation in a natural population of Myracrodruon urundeuva. Pesquisa Agropecuaria Brasileira, 2002, 37, 909-916.	0.9	5
135	Effect of enzymatic pretreatment of sugarcane bagasse with recombinant hemicellulases and esterase prior to the application of the cellobiohydrolase CBH I Megazyme®. Biomass Conversion and Biorefinery, 2022, 12, 491-499.	4.6	5
136	Immobilization studies of a pectinase produced by <i>Aspergillus terreus</i> . Biotechnology and Applied Biochemistry, 2021, 68, 197-208.	3.1	5
137	Increased Malbranchea pulchella β-glucosidase production and its application in agroindustrial residue hydrolysis: A research based on experimental designs. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0	.7 8 4814 rş	g Ba /Overloc
138	(1,3)-β-D-Glucan Synthase Activity in Mycelial and Cell Wall-less Phenotypes of the fz, sg, os-1 ("Slime") Mutant Strain of Neurospora crassa. Experimental Mycology, 1995, 19, 35-47.	1.6	4
139	Changes in N-acetyl galactosaminoglycan deacetylase levels during growth ofNeurospora crassa: effect ofL-sorbose on enzyme production. Journal of Basic Microbiology, 1999, 39, 337-344.	3.3	4
140	Biochemical characterization of a Ca2+-dependent acid trehalase activity from the thermophilic fungus Chaetomium thermophilum var. coprophilum. FEMS Microbiology Letters, 1999, 171, 11-15.	1.8	4
141	Thermostable saccharogenic amylase produced under submerged fermentation by filamentous fungus Penicillium purpurogenum. Brazilian Journal of Microbiology, 2011, 42, 1136-1140.	2.0	4
142	Cold-Active Lytic Enzymes and Their Applicability in the Biocontrol of Postharvest Fungal Pathogens. Journal of Agricultural and Food Chemistry, 2020, 68, 6461-6463.	5.2	4
143	Purification and characterization of galactose-induced pectinases from the exo-1 mutant strain of Neurospora crassa. Progress in Biotechnology, 1996, 14, 787-792.	0.2	3
144	Endo-xylanase GH11 activation by the fungal metabolite eugenitin. Biotechnology Letters, 2012, 34, 1487-1492.	2.2	3

#	Article	IF	CITATIONS
145	Fermentation pH in stirred tank and air-lift bioreactors affects phytase secretion byAspergillus japonicusdifferently but not the particle size. Biocatalysis and Biotransformation, 2014, 32, 39-44.	2.0	3
146	Biochemical effect of a histidine phosphatase acid (phytase) of Aspergillus japonicus var. Saito on performance and bony characteristics of broiler. SpringerPlus, 2016, 5, 1418.	1.2	3
147	Perspectives on Exploring Denitrifying Fungi as a Model To Evaluate Nitrous Oxide Production and Reduce Emissions from Agricultural Soils. Journal of Agricultural and Food Chemistry, 2019, 67, 12153-12154.	5.2	3
148	Perspectives on Expanding the Repertoire of Novel Microbial Chitinases for Biological Control. Journal of Agricultural and Food Chemistry, 2021, 69, 3284-3288.	5.2	3
149	Structural model and functional properties of an exo-polygalacturonase from Neosartorya glabra. International Journal of Biological Macromolecules, 2021, 186, 909-918.	7.5	3
150	Climate change affects cellâ€wall structure and hydrolytic performance of a perennial grass as an energy crop. Biofuels, Bioproducts and Biorefining, 2022, 16, 471-487.	3.7	3
151	Biochemical characterization and biological properties of mycelium extracts from Lepista sordida GMA-05 and Trametes hirsuta GMA-01: new mushroom strains isolated in Brazil. Brazilian Journal of Microbiology, 2022, 53, 349.	2.0	3
152	Immobilization of a recombinant endo-1,5-arabinanase secreted by Aspergillus nidulans strain A773. Journal of Molecular Catalysis B: Enzymatic, 2012, , .	1.8	2
153	Pectinases Produced by Microorganisms. , 2013, , .		2
154	Matrix Discriminant Analysis Evidenced Surface-Lithium as an Important Factor to Increase the Hydrolytic Saccharification of Sugarcane Bagasse. Molecules, 2019, 24, 3614.	3.8	1
155	Statistical optimization of cornmeal saccharification using various hydrolases. Biomass Conversion and Biorefinery, 0, , 1.	4.6	1
156	Structural and compositional changes induced by hydrothermal and organosolv pretreatments impacts enzymatic hydrolysis of a tropical forage grass grown under future climate conditions. Industrial Crops and Products, 2021, 171, 113937.	5.2	1
157	Environmental parameters affecting the anaerobic microbial community. , 2021, , 219-252.		1
158	Biochemical characterization of glucoamylase from the hyperproducer exo-1 mutant strain of Neurospora erassa. FEMS Microbiology Letters, 1996, 138, 173-177.	1.8	1
159	Anaerobic digestion of cornmeal – the effect of crude enzyme extract and coâ€digestion with cow manure. Biofuels, Bioproducts and Biorefining, 0, , .	3.7	1
160	Effects of Ultraviolet Exposure on the Tropical Fungi <i>Aspergillus carbonarius</i> and <i>Aspergillus japonicus</i> : Survival, Amylase Production, and Thermostability. Tropical Conservation Science, 2022, 15, 194008292210926.	1.2	1
161	Investigation of biochemical and biotechnological potential of a thermo-halo-alkali-tolerant endo-xylanase (GH11) from Humicola brevis var. thermoidea for lignocellulosic valorization of sugarcane biomass. Biocatalysis and Agricultural Biotechnology, 2022, 44, 102424.	3.1	1

162 Gel Electrophoresis for Investigating Enzymes with Biotechnological Application., 0,,.