## Wei-Xin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4801448/publications.pdf

Version: 2024-02-01

270 papers

15,802 citations

71 h-index 22166 113 g-index

280 all docs

280 docs citations

times ranked

280

15045 citing authors

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Morphology-engineered highly active and stable Pd/TiO2 catalysts for CO2 hydrogenation into formate. Journal of Catalysis, 2022, 405, 152-163.                                                                                                             | 6.2  | 33        |
| 2  | <scp>Cu<sub>2</sub>O</scp> Nanocrystal Model Catalysts. Chinese Journal of Chemistry, 2022, 40, 846-855.                                                                                                                                                   | 4.9  | 18        |
| 3  | Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts. ACS Catalysis, 2022, 12, 1268-1287.                                                                                                     | 11.2 | 156       |
| 4  | Tuning activity and selectivity of CO2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts. Journal of Catalysis, 2022, 407, 126-140.                                                                                              | 6.2  | 34        |
| 5  | <i>In Situ</i> Generated Ti <sup>3+</sup> -Mediated Photocatalytic Methanol Decomposition to Carbon Monoxide and Hydrogen on a Rutile TiO <sub>2</sub> (100) Surface. Journal of Physical Chemistry Letters, 2022, 13, 2614-2618.                          | 4.6  | 1         |
| 6  | Multiple Promotional Effects of Vanadium Oxide on Boron Nitride for Oxidative Dehydrogenation of Propane. Jacs Au, 2022, 2, 1096-1104.                                                                                                                     | 7.9  | 20        |
| 7  | Structural evolution and catalytic performance in CO2 hydrogenation reaction of ZnO-ZrO2 composite oxides. Applied Surface Science, 2022, 587, 152884.                                                                                                     | 6.1  | 16        |
| 8  | A near-ambient pressure flow reactor coupled with polarization-modulation infrared reflection absorption spectroscopy for <i>operando</i> studies of heterogeneous catalytic reactions over model catalysts. Review of Scientific Instruments, 2022, 93, . | 1.3  | 3         |
| 9  | <scp>Morphologyâ€Dependent</scp> Catalysis of <scp>CeO<sub>2</sub>â€Based</scp> Nanocrystal<br>Model Catalysts. Chinese Journal of Chemistry, 2022, 40, 1856-1866.                                                                                         | 4.9  | 18        |
| 10 | Interfacial interaction-dependent in situ restructure of NiO/TiO2 photocatalysts. Applied Surface Science, 2022, 596, 153606.                                                                                                                              | 6.1  | 9         |
| 11 | Role of Water in Methanol Photochemistry on TiO <sub>2</sub> Nanocrystals: An In Situ DRIFTS Study.<br>Journal of Physical Chemistry C, 2022, 126, 8615-8626.                                                                                              | 3.1  | 4         |
| 12 | Spontaneous Bulk-Surface Charge Separation of TiO <sub>2</sub> -{001} Nanocrystals Leads to High Activity in Photocatalytic Methane Combustion. ACS Catalysis, 2022, 12, 6457-6463.                                                                        | 11.2 | 16        |
| 13 | Co <sup>3+</sup> –O Bond Elongation Unlocks Co <sub>3</sub> O <sub>4</sub> for Methane Activation under Ambient Conditions. ACS Catalysis, 2022, 12, 7037-7045.                                                                                            | 11.2 | 9         |
| 14 | Size-Dependent Redispersion or Agglomeration of Ag Clusters on CeO <sub>2</sub> . Journal of Physical Chemistry C, 2022, 126, 11537-11543.                                                                                                                 | 3.1  | 6         |
| 15 | Complex surface engineering meets simple and beautiful surface chemistry. Science China Chemistry, 2021, 64, 167-168.                                                                                                                                      | 8.2  | 0         |
| 16 | Engineering self-doped surface defects of anatase TiO2 nanosheets for enhanced photocatalytic efficiency. Applied Surface Science, 2021, 540, 148330.                                                                                                      | 6.1  | 34        |
| 17 | Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis:<br>Methanol Oxidation on Anatase TiO 2 Nanocrystals. Angewandte Chemie, 2021, 133, 6225-6234.                                                             | 2.0  | 7         |
| 18 | Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO <sub>2</sub> Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 6160-6169.                              | 13.8 | 52        |

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interaction of Hydrogen with Ceria: Hydroxylation, Reduction, and Hydride Formation on the Surface and in the Bulk. Chemistry - A European Journal, 2021, 27, 5268-5276.                    | 3.3  | 44        |
| 20 | Reactivity of hydrogen species on oxide surfaces. Science China Chemistry, 2021, 64, 1076-1087.                                                                                             | 8.2  | 28        |
| 21 | Crystal-plane effects of anatase TiO2 on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Journal of Catalysis, 2021, 395, 10-22.                                      | 6.2  | 29        |
| 22 | Structure Sensitivity of Auâ€TiO <sub>2</sub> Strong Metal–Support Interactions. Angewandte Chemie - International Edition, 2021, 60, 12074-12081.                                          | 13.8 | 161       |
| 23 | Structure Sensitivity of Auâ€₹iO 2 Strong Metal–Support Interactions. Angewandte Chemie, 2021, 133, 12181-12188.                                                                            | 2.0  | 11        |
| 24 | Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. Journal of Catalysis, 2021, 397, 116-127.                                                   | 6.2  | 63        |
| 25 | Highly Selective Acetylene Semihydrogenation Catalyst with an Operation Window Exceeding 150 $\hat{A}^{\circ}$ C. ACS Catalysis, 2021, 11, 6073-6080.                                       | 11.2 | 33        |
| 26 | The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions. Nature Communications, 2021, 12, 4331.                                                             | 12.8 | 83        |
| 27 | Synergistic Catalysis of Al and Zn Sites of Spinel ZnAl <sub>2</sub> O <sub>4</sub> Catalyst for CO Hydrogenation to Methanol and Dimethyl Ether. ACS Catalysis, 2021, 11, 10014-10019.     | 11.2 | 28        |
| 28 | Oxidative Coupling of Methanol with Molecularly Adsorbed Oxygen on Au Surface to Methyl Formate. Journal of Physical Chemistry Letters, 2021, 12, 6941-6945.                                | 4.6  | 3         |
| 29 | 7Li NMR investigations of Li/MgO catalysts for oxidative coupling of methane. Molecular Catalysis, 2021, 513, 111802.                                                                       | 2.0  | 1         |
| 30 | Hydride species on oxide catalysts. Journal of Physics Condensed Matter, 2021, 33, 433001.                                                                                                  | 1.8  | 11        |
| 31 | Quantification of critical particle distance for mitigating catalyst sintering. Nature Communications, 2021, 12, 4865.                                                                      | 12.8 | 62        |
| 32 | X-ray-Induced CO2 Formation via CO Reaction with TiO2 at Cryogenic Temperature. Journal of Physical Chemistry Letters, 2021, 12, 9741-9747.                                                 | 4.6  | 1         |
| 33 | The effects of TiO2 crystal-plane-dependent Ir-TiO interactions on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Chinese Journal of Catalysis, 2021, 42, 1742-1754. | 14.0 | 7         |
| 34 | TiO2 Facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction. Applied Surface Science, 2021, 564, 150407.                                       | 6.1  | 52        |
| 35 | Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nature Communications, 2021, 12, 5770.                                              | 12.8 | 43        |
| 36 | Coordinating ultra-low content Au modified CdS with coupling selective oxidation and reduction system for improved photoexcited charge utilization. Journal of Catalysis, 2021, 402, 72-82. | 6.2  | 19        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effect of the modification of alumina supports with chloride on the structure and catalytic performance of Ag/Al2O3 catalysts for the selective catalytic reduction of NO with propene and H2/propene. Chinese Journal of Catalysis, 2021, 42, 2242-2253. | 14.0 | 12        |
| 38 | Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.                                                                                                                                        | 34.4 | 132       |
| 39 | Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nature Communications, 2021, 12, 5921.                                                                                                         | 12.8 | 33        |
| 40 | The Roles of Precursor-Induced Metal–Support Interaction on the Selective Hydrogenation of Crotonaldehyde over Ir/TiO2 Catalysts. Catalysts, 2021, 11, 1216.                                                                                              | 3.5  | 1         |
| 41 | Near Ambient-Pressure X-ray Photoelectron Spectroscopy Study of CO Activation and Hydrogenation on Co(0001). Journal of Physical Chemistry C, 2021, 125, 22223-22230.                                                                                     | 3.1  | 5         |
| 42 | Morphology-dependent CeO2 catalysis in acetylene semihydrogenation reaction. Applied Surface Science, 2020, 501, 144120.                                                                                                                                  | 6.1  | 29        |
| 43 | Photoionization Mass Spectrometry for Online Detection of Reactive and Unstable Gasâ€Phase Intermediates in Heterogeneous Catalytic Reactions. ChemCatChem, 2020, 12, 675-688.                                                                            | 3.7  | 14        |
| 44 | Tuning the size of photo-deposited metal nanoparticles <i>via</i> manipulating surface defect structures of TiO <sub>2</sub> nanocrystals. Chemical Communications, 2020, 56, 1964-1967.                                                                  | 4.1  | 16        |
| 45 | High-Temperature Synthesis of Small-Sized Pt/Nb Alloy Catalysts on Carbon Supports for Hydrothermal Reactions. Inorganic Chemistry, 2020, 59, 15953-15961.                                                                                                | 4.0  | 7         |
| 46 | Metal-Free Ceria Catalysis for Selective Hydrogenation of Crotonaldehyde. ACS Catalysis, 2020, 10, 14560-14566.                                                                                                                                           | 11.2 | 64        |
| 47 | Zinc Oxide Morphologyâ€Dependent Pd/ZnO Catalysis in Baseâ€Free CO <sub>2</sub> Hydrogenation into Formic Acid. ChemCatChem, 2020, 12, 5540-5547.                                                                                                         | 3.7  | 24        |
| 48 | A high-pressure reactor coupled to synchrotron radiation photoionization mass spectrometry. Review of Scientific Instruments, 2020, 91, 093102.                                                                                                           | 1.3  | 4         |
| 49 | Morphology-Dependent CO Reduction Kinetics and Surface Copper Species Evolution of Cu <sub>2</sub> O Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 21568-21576.                                                                               | 3.1  | 20        |
| 50 | Frontispiece: Electronic Oxide–Metal Strong Interaction (EOMSI). Chemistry - A European Journal, 2020, 26, .                                                                                                                                              | 3.3  | 0         |
| 51 | Single-Site Catalysis of Li-MgO Catalysts for Oxidative Coupling of Methane Reaction. ACS Catalysis, 2020, 10, 15142-15148.                                                                                                                               | 11.2 | 34        |
| 52 | Role of Coadsorbates in Shaping the Reaction Pathways of Alkyl Fragments on Co Surfaces. Journal of Physical Chemistry C, 2020, 124, 24786-24794.                                                                                                         | 3.1  | 4         |
| 53 | Single step combustion synthesis of novel Fe2TiO5/l±-Fe2O3/TiO2 ternary photocatalyst with combined double type-II cascade charge migration processes and efficient photocatalytic activity. Applied Surface Science, 2020, 525, 146571.                  | 6.1  | 29        |
| 54 | Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions. Journal of Energy Chemistry, 2020, 50, 351-357.                                                                                   | 12.9 | 22        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Electronic Oxide–Metal Strong Interaction (EOMSI). Chemistry - A European Journal, 2020, 26, 13538-13542.                                                                                                                               | 3.3  | 9         |
| 56 | Size-Dependent Structures and Catalytic Performances of Au/TiO <sub>2</sub> -{001} Catalysts for Propene Epoxidation. Journal of Physical Chemistry C, 2020, 124, 15264-15274.                                                          | 3.1  | 8         |
| 57 | Titelbild: Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts (Angew. Chem. 21/2020). Angewandte Chemie, 2020, 132, 8045-8045.                                       | 2.0  | 0         |
| 58 | Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Angewandte Chemie - International Edition, 2020, 59, 8042-8046.                                                  | 13.8 | 83        |
| 59 | Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal<br>Boron Nitride Catalysts. Angewandte Chemie, 2020, 132, 8119-8123.                                                                      | 2.0  | 11        |
| 60 | N-Coordinated Dual-Metal Single-Site Catalyst for Low-Temperature CO Oxidation. ACS Catalysis, 2020, 10, 2754-2761.                                                                                                                     | 11.2 | 112       |
| 61 | Surface chemistry and photochemistry of small molecules on rutile TiO2(001) and TiO2(011)-(2 $\tilde{A}$ — 1) surfaces: The crucial roles of defects. Journal of Chemical Physics, 2020, 152, 044702.                                   | 3.0  | 9         |
| 62 | Understanding morphology-dependent CuO -CeO2 interactions from the very beginning. Chinese Journal of Catalysis, 2020, 41, 1006-1016.                                                                                                   | 14.0 | 56        |
| 63 | Titania Morphologyâ€Dependent Catalysis of CuO <sub>x</sub> /TiO <sub>2</sub> Catalysts in CO<br>Oxidation and Water Gas Shift Reactions. ChemCatChem, 2020, 12, 3679-3686.                                                             | 3.7  | 29        |
| 64 | Surface chemistry of TiO <sub>2</sub> connecting thermal catalysis and photocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 9875-9909.                                                                                        | 2.8  | 42        |
| 65 | Size-Dependent Pt-TiO <sub>2</sub> Strong Metal–Support Interaction. Journal of Physical Chemistry Letters, 2020, 11, 4603-4607.                                                                                                        | 4.6  | 50        |
| 66 | Influence of Polyvinylpyrrolidone Capping Ligands on Electrocatalytic Oxidation of Methanol and Ethanol over Palladium Nanocrystal Electrocatalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .                         | 4.9  | 1         |
| 67 | Oxidation of Reduced Ceria by Incorporation of Hydrogen. Angewandte Chemie, 2019, 131, 14828-14835.                                                                                                                                     | 2.0  | 25        |
| 68 | Oxidation of Reduced Ceria by Incorporation of Hydrogen. Angewandte Chemie - International Edition, 2019, 58, 14686-14693.                                                                                                              | 13.8 | 112       |
| 69 | Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts. Journal of Catalysis, 2019, 376, 57-67.                                                                              | 6.2  | 83        |
| 70 | Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals. Surface Science Reports, 2019, 74, 100471.                                                                                               | 7.2  | 99        |
| 71 | Electronic Metalâ€Support Interactionâ€Modified Structures and Catalytic Activity of CeO x Overlayers in CeO x /Ag Inverse Catalysts. Chemistry - A European Journal, 2019, 25, 15978-15982.                                            | 3.3  | 12        |
| 72 | Anatase TiO <sub>2</sub> (001)-(1 $\tilde{A}$ — 4) Surface Is Intrinsically More Photocatalytically Active than the Rutile TiO <sub>2</sub> (110)-(1 $\tilde{A}$ — 1) Surface. Journal of Physical Chemistry C, 2019, 123, 24558-24565. | 3.1  | 19        |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. Applied Surface Science, 2019, 476, 982-992.                                                                                            | 6.1  | 101       |
| 74 | Siteâ€Resolved Cu <sub>2</sub> O Catalysis in the Oxidation of CO. Angewandte Chemie - International Edition, 2019, 58, 4276-4280.                                                                                                                                   | 13.8 | 81        |
| 75 | Siteâ€Resolved Cu 2 O Catalysis in the Oxidation of CO. Angewandte Chemie, 2019, 131, 4320-4324.                                                                                                                                                                     | 2.0  | 12        |
| 76 | Gas-Phase Reaction Network of Li/MgO-Catalyzed Oxidative Coupling of Methane and Oxidative Dehydrogenation of Ethane. ACS Catalysis, 2019, 9, 2514-2520.                                                                                                             | 11.2 | 71        |
| 77 | Pentacoordinated Al <sup>3+</sup> â€Stabilized Active Pd Structures on Al <sub>2</sub> O <sub>3</sub> â€Coated Palladium Catalysts for Methane Combustion. Angewandte Chemie - International Edition, 2019, 58, 12043-12048.                                         | 13.8 | 109       |
| 78 | Methanol Partial Oxidation Over Shaped Silver Nanoparticles Derived from Cubic and Octahedral Ag2O Nanocrystals. Catalysis Letters, 2019, 149, 2482-2491.                                                                                                            | 2.6  | 8         |
| 79 | Pentacoordinated Al <sup>3+</sup> â€Stabilized Active Pd Structures on Al <sub>2</sub> O <sub>3</sub> â€Coated Palladium Catalysts for Methane Combustion. Angewandte Chemie, 2019, 131, 12171-12176.                                                                | 2.0  | 10        |
| 80 | Morphologieâ€optimierte hochaktive und â€stabile Ru/TiO <sub>2</sub> â€Katalysatoren fÃ⅓r die selektive COâ€Methanisierung. Angewandte Chemie, 2019, 131, 10842-10847.                                                                                               | 2.0  | 7         |
| 81 | Morphologyâ€Engineered Highly Active and Stable Ru/TiO <sub>2</sub> Catalysts for Selective CO<br>Methanation. Angewandte Chemie - International Edition, 2019, 58, 10732-10736.                                                                                     | 13.8 | 81        |
| 82 | Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catalysis, 2019, 9, 5692-5707.                                                                                                                                              | 11.2 | 127       |
| 83 | Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.                                                                                                      | 13.7 | 285       |
| 84 | Morphology-Dependent Evolutions of Sizes, Structures, and Catalytic Activity of Au Nanoparticles on Anatase TiO <sub>2</sub> Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 10367-10376.                                                                  | 3.1  | 39        |
| 85 | Direct evidence for hydrated protons as the active species in artificial photocatalytic water reduction into hydrogen. Science China Chemistry, 2019, 62, 199-204.                                                                                                   | 8.2  | 23        |
| 86 | Isoelectric point-controlled preferential photodeposition of platinum on Cu2O-TiO2 composite surfaces. Chinese Chemical Letters, 2019, 30, 985-988.                                                                                                                  | 9.0  | 19        |
| 87 | Crystal-plane effect of Cu <sub>2</sub> O templates on compositions, structures and catalytic performance of Ag/Cu <sub>2</sub> O nanocomposites. CrystEngComm, 2019, 21, 2002-2008.                                                                                 | 2.6  | 26        |
| 88 | Electronic Metalâ€Support Interactionâ€Modified Structures and Catalytic Activity of CeO x Overlayers in CeO x /Ag Inverse Catalysts. Chemistry - A European Journal, 2019, 25, 15962-15962.                                                                         | 3.3  | 0         |
| 89 | On the Mechanism of Methyl Formate Production Initiated by Photooxidation of Methanol on Rutile TiO $<$ sub $>$ 2 $<$ /sub $>$ (110) and TiO $<$ sub $>$ 2 $<$ /sub $>$ (011)-(2 $\tilde{A}$ — 1) Surfaces. Journal of Physical Chemistry C, 2019, 123, 31073-31081. | 3.1  | 14        |
| 90 | Surface Chemistry of CH2I2 on Clean, Hydrogen- and Carbon Monoxide-Covered Co(0001) Surfaces. Journal of Physical Chemistry C, 2019, 123, 7740-7748.                                                                                                                 | 3.1  | 4         |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Surface and interface design for heterogeneous catalysis. Physical Chemistry Chemical Physics, 2019, 21, 523-536.                                                                                        | 2.8  | 49        |
| 92  | Tuning CuOx-TiO2 interaction and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts via TiO2 morphology engineering. Applied Surface Science, 2019, 473, 500-510.                            | 6.1  | 51        |
| 93  | Spectroscopic study of microstructure-reducibility relation of CexZr1â^'xO2 solid solutions. Applied Surface Science, 2019, 467-468, 361-369.                                                            | 6.1  | 11        |
| 94  | Thermal-, photo- and electron-induced reactivity of hydrogen species on rutile TiO2(110) surface: Role of oxygen vacancy. Chinese Chemical Letters, 2018, 29, 752-756.                                   | 9.0  | 27        |
| 95  | Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO <sub>2</sub> . Angewandte Chemie - International Edition, 2018, 57, 1944-1948.                   | 13.8 | 888       |
| 96  | Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO <sub>2</sub> . Angewandte Chemie, 2018, 130, 1962-1966.                                          | 2.0  | 244       |
| 97  | Photocatalytic organic transformations: Simultaneous oxidation of aromatic alcohols and reduction of nitroarenes on CdLa2S4 in one reaction system. Applied Catalysis B: Environmental, 2018, 233, 1-10. | 20.2 | 44        |
| 98  | Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nature Communications, 2018, 9, 1231.                                                         | 12.8 | 213       |
| 99  | Hollow PdCo alloy nanospheres with mesoporous shells as high-performance catalysts for methanol oxidation. Journal of Colloid and Interface Science, 2018, 522, 264-271.                                 | 9.4  | 61        |
| 100 | Surface Immobilization of Transition Metal Ions on Nitrogenâ€Doped Graphene Realizing Highâ€Efficient and Selective CO <sub>2</sub> Reduction. Advanced Materials, 2018, 30, e1706617.                   | 21.0 | 276       |
| 101 | An <i>in situ</i> DRIFTS mechanistic study of CeO <sub>2</sub> -catalyzed acetylene semihydrogenation reaction. Physical Chemistry Chemical Physics, 2018, 20, 9659-9670.                                | 2.8  | 63        |
| 102 | Facet Sensitivity of Capping Ligandâ€Free Ag Crystals in CO <sub>2</sub> Electrochemical Reduction to CO. ChemCatChem, 2018, 10, 5128-5134.                                                              | 3.7  | 29        |
| 103 | Site- and surface species-dependent propylene oxidation with molecular oxygen on gold surface.<br>Chinese Chemical Letters, 2018, 29, 1883-1887.                                                         | 9.0  | 7         |
| 104 | Titania-morphology-dependent dual-perimeter-sites catalysis by Au/TiO2 catalysts in low-temperature CO oxidation. Journal of Catalysis, 2018, 368, 163-171.                                              | 6.2  | 47        |
| 105 | Effect of Particle Shape and Electrolyte Cation on CO Adsorption to Copper Oxide Nanoparticle Electrocatalysts. Journal of Physical Chemistry C, 2018, 122, 26489-26498.                                 | 3.1  | 33        |
| 106 | Sizeâ€Dependency of Gold Nanoparticles on TiO <sub>2</sub> for CO Oxidation. Small Methods, 2018, 2, 1800273.                                                                                            | 8.6  | 16        |
| 107 | The Double-Edged Sword Effect of Water in the Low-Temperature CO Oxidation on Pt(111) Surface. Journal of Physical Chemistry C, 2018, 122, 22530-22537.                                                  | 3.1  | 7         |
| 108 | A flow-pulse adsorption-microcalorimetry system for studies of adsorption processes on powder catalysts. Review of Scientific Instruments, 2018, 89, 064101.                                             | 1.3  | 17        |

| #   | Article                                                                                                                                                                                                                                                                                    | IF   | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Pd Doped La0.1Sr0.9TiO3 as High-Temperature Water-Gas Shift Catalysts: In-Situ Formation of Active Pd Phase. Catalysis Letters, 2018, 148, 2830-2838.                                                                                                                                      | 2.6  | 6         |
| 110 | Ultra-low content of Pt modified CdS nanorods: Preparation, characterization, and application for photocatalytic selective oxidation of aromatic alcohols and reduction of nitroarenes in one reaction system. Journal of Hazardous Materials, 2018, 360, 182-192.                         | 12.4 | 45        |
| 111 | Synthesis in a Glovebox: Utilizing Surface Oxygen Vacancies To Enhance the Atomic Dispersion of Palladium on Ceria for Carbon Monoxide Oxidation and Propane Combustion. ACS Applied Nano Materials, 2018, 1, 4988-4997.                                                                   | 5.0  | 39        |
| 112 | Flowerlike NiCo <sub>2</sub> S <sub>4</sub> Hollow Sub-Microspheres with Mesoporous Nanoshells Support Pd Nanoparticles for Enhanced Hydrogen Evolution Reaction Electrocatalysis in Both Acidic and Alkaline Conditions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22248-22256. | 8.0  | 52        |
| 113 | Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nature Communications, 2018, 9, 2533.                                                                                                                                       | 12.8 | 356       |
| 114 | Surface chemistry of solid catalysts. Scientia Sinica Chimica, 2018, 48, 1076-1093.                                                                                                                                                                                                        | 0.4  | 10        |
| 115 | Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation. Catalysis Today, 2017, 280, 253-258.                                                                                                                                                                | 4.4  | 22        |
| 116 | Selfâ€Anticoking of a Cobalt Surface by Subsurface Oxygen in the Fischer–Tropsch Synthesis. Chemistry - A European Journal, 2017, 23, 3262-3266.                                                                                                                                           | 3.3  | 8         |
| 117 | Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Research, 2017, 10, 1302-1312.                                                                                                                                       | 10.4 | 220       |
| 118 | Structural Dependence of Competitive Adsorption of Water and Methanol on <scp>TiO<sub>2</sub></scp> Surfaces. Chinese Journal of Chemistry, 2017, 35, 889-895.                                                                                                                             | 4.9  | 12        |
| 119 | Surface Reconstruction-Induced Site-Specific Charge Separation and Photocatalytic Reaction on Anatase TiO <sub>2</sub> (001) Surface. Journal of Physical Chemistry C, 2017, 121, 9991-9999.                                                                                               | 3.1  | 37        |
| 120 | Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials. Applied Surface Science, 2017, 396, 1696-1711.                                                                                                                                       | 6.1  | 168       |
| 121 | NbO x /CeO 2 -rods catalysts for oxidative dehydrogenation of propane: Nb–CeO 2 interaction and reaction mechanism. Journal of Catalysis, 2017, 348, 189-199.                                                                                                                              | 6.2  | 59        |
| 122 | Surface chemistry of group IB metals and related oxides. Chemical Society Reviews, 2017, 46, 1977-2000.                                                                                                                                                                                    | 38.1 | 51        |
| 123 | Fe-doped CeO2 solid solutions: Substituting-site doping versus interstitial-site doping, bulk doping versus surface doping. Applied Surface Science, 2017, 414, 131-139.                                                                                                                   | 6.1  | 32        |
| 124 | Distribution and role of Li in Li-doped MgO catalysts for oxidative coupling of methane. Journal of Catalysis, 2017, 346, 57-61.                                                                                                                                                           | 6.2  | 52        |
| 125 | Reaction Sensitivity of Ceria Morphology Effect on Ni/CeO <sub>2</sub> Catalysis in Propane Oxidation Reactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35897-35907.                                                                                                           | 8.0  | 105       |
| 126 | The most active Cu facet for low-temperature water gas shift reaction. Nature Communications, 2017, 8, 488.                                                                                                                                                                                | 12.8 | 141       |

| #   | Article                                                                                                                                                                                                                           | IF   | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Elementary Surface Reactions on Co(0001) under Fischer–Tropsch Synthesis Conditions. Journal of Physical Chemistry C, 2017, 121, 21535-21540.                                                                                     | 3.1  | 15        |
| 128 | Boosting CO <sub>2</sub> electroreduction over layered zeolitic imidazolate frameworks decorated with Ag <sub>2</sub> O nanoparticles. Journal of Materials Chemistry A, 2017, 5, 19371-19377.                                    | 10.3 | 61        |
| 129 | Surface Chemistry of Formaldehyde on Rutile TiO $<$ sub $>$ 2 $<$ /sub $>$ (011)-(2 $\tilde{A}$ — 1) Surface: Photocatalysis Versus Thermal-Catalysis. Journal of Physical Chemistry C, 2017, 121, 25921-25929.                   | 3.1  | 23        |
| 130 | Gas phase propylene epoxidation over Au supported on titanosilicates with different Ti chemical environments. Applied Surface Science, 2017, 393, 11-22.                                                                          | 6.1  | 27        |
| 131 | Structure-Sensitivity of Au Catalysis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 48-60.                                                                                                                        | 4.9  | 15        |
| 132 | Reaction heat-driven CO2 desorption during CO oxidation on Au(997) at low temperatures. Science China Chemistry, 2016, 59, 752-759.                                                                                               | 8.2  | 5         |
| 133 | Oxide Nanocrystal Model Catalysts. Accounts of Chemical Research, 2016, 49, 520-527.                                                                                                                                              | 15.6 | 184       |
| 134 | Water-Activated Lattice Oxygen in FeO(111) Islands for Low-Temperature Oxidation of CO at Pt–FeO Interface. Journal of Physical Chemistry C, 2016, 120, 9845-9851.                                                                | 3.1  | 32        |
| 135 | Activating Edge Sites on Pd Catalysts for Selective Hydrogenation of Acetylene via Selective Ga <sub>0<sub>3</sub> Decoration. ACS Catalysis, 2016, 6, 3700-3707.</sub>                                                           | 11.2 | 97        |
| 136 | Morphology-dependent structures and catalytic performances of Au nanostructures on Cu 2 O nanocrystals synthesized by galvanic replacement reaction. Journal of Energy Chemistry, 2016, 25, 1086-1091.                            | 12.9 | 21        |
| 137 | Lowâ€Temperature Transformation of Methane to Methanol on Pd <sub>1</sub> O <sub>4</sub> Single Sites Anchored on the Internal Surface of Microporous Silicate. Angewandte Chemie - International Edition, 2016, 55, 13441-13445. | 13.8 | 180       |
| 138 | Probing Surface Structures of CeO <sub>2</sub> , TiO <sub>2</sub> , and Cu <sub>2</sub> O Nanocrystals with CO and CO <sub>2</sub> Chemisorption. Journal of Physical Chemistry C, 2016, 120, 21472-21485.                        | 3.1  | 143       |
| 139 | Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts. Applied Surface Science, 2016, 389, 760-767.                                                            | 6.1  | 56        |
| 140 | Auâ€Cu Alloy Formation on Cubic Cu <sub>2</sub> O Nanocrystals at Ambient Temperature and Their Catalytic Performance. ChemNanoMat, 2016, 2, 861-865.                                                                             | 2.8  | 12        |
| 141 | Morphology-dependent defect structures and photocatalytic performance of hydrogenated anatase TiO2 nanocrystals. Journal of Catalysis, 2016, 341, 126-135.                                                                        | 6.2  | 94        |
| 142 | Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. Journal of the American Chemical Society, 2016, 138, 13850-13853.                                                                                                            | 13.7 | 132       |
| 143 | Proton-Transfer-Connected Elementary Surface Reaction Network for Low-Temperature CO Oxidation Catalyzed by Metal-Oxide Nanocatalysts. Journal of Physical Chemistry C, 2016, 120, 26968-26973.                                   | 3.1  | 12        |
| 144 | Surface reaction network of CO oxidation on CeO <sub>2</sub> /Au(110) inverse model catalysts. Physical Chemistry Chemical Physics, 2016, 18, 32551-32559.                                                                        | 2.8  | 9         |

| #   | Article                                                                                                                                                                                                       | IF   | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Oxidation of formic acid on stepped Au(997) surface. Chinese Journal of Catalysis, 2016, 37, 1738-1746.                                                                                                       | 14.0 | 6         |
| 146 | Lowâ€Temperature Transformation of Methane to Methanol on Pd <sub>1</sub> O <sub>4</sub> Single Sites Anchored on the Internal Surface of Microporous Silicate. Angewandte Chemie, 2016, 128, 13639-13643.    | 2.0  | 40        |
| 147 | Methanol Conversion into Dimethyl Ether on the Anatase TiO <sub>2</sub> (001) Surface. Angewandte Chemie - International Edition, 2016, 55, 623-628.                                                          | 13.8 | 64        |
| 148 | CeO2 morphology-dependent NbOx –CeO2 interaction, structure and catalytic performance of NbOx/CeO2 catalysts in oxidative dehydrogenation of propane. Applied Catalysis B: Environmental, 2016, 197, 214-221. | 20.2 | 58        |
| 149 | Utilization of Active Ni to Fabricate Pt–Ni Nanoframe/NiAl Layered Double Hydroxide Multifunctional Catalyst through In Situ Precipitation. Chemistry - A European Journal, 2015, 21, 13181-13185.            | 3.3  | 19        |
| 150 | Titania Morphologyâ€Dependent Gold–Titania Interaction, Structure, and Catalytic Performance of Gold/Titania Catalysts. ChemCatChem, 2015, 7, 3290-3298.                                                      | 3.7  | 60        |
| 151 | TiO <sub>2</sub> /Cu <sub>2</sub> O Core/Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction. Angewandte Chemie - International Edition, 2015, 54, 15260-15265.               | 13.8 | 109       |
| 152 | Identification of different oxygen species in oxide nanostructures with <sup>17</sup> O solid-state NMR spectroscopy. Science Advances, 2015, 1, e1400133.                                                    | 10.3 | 72        |
| 153 | Rich Capping Ligand–Ag Colloid Interactions. Journal of Physical Chemistry C, 2015, 119, 27588-27593.                                                                                                         | 3.1  | 16        |
| 154 | Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO <sub>2</sub> nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 31862-31871.                 | 2.8  | 96        |
| 155 | Catalysis on singly dispersed bimetallic sites. Nature Communications, 2015, 6, 7938.                                                                                                                         | 12.8 | 235       |
| 156 | Hydrogen Spillover Enhanced Hydroxyl Formation and Catalytic Activity Toward CO Oxidation at the Metal/Oxide Interface. Chemistry - A European Journal, 2015, 21, 4252-4256.                                  | 3.3  | 17        |
| 157 | Size-Dependent Reaction Pathways of Low-Temperature CO Oxidation on Au/CeO <sub>2</sub> Catalysts. ACS Catalysis, 2015, 5, 1653-1662.                                                                         | 11.2 | 143       |
| 158 | Understanding complete oxidation of methane on spinel oxides at a molecular level. Nature Communications, 2015, 6, 7798.                                                                                      | 12.8 | 237       |
| 159 | Theoretical investigation of gold based model catalysts. Science China Chemistry, 2015, 58, 565-573.                                                                                                          | 8.2  | 11        |
| 160 | Surface Chemistry and Catalytic Properties of Well-Defined Cu2O Nanocrystals., 2015,, 1-29.                                                                                                                   |      | 0         |
| 161 | Structural features and catalytic performance in CO preferential oxidation of CuO–CeO <sub>2</sub> supported on multi-walled carbon nanotubes. Catalysis Science and Technology, 2015, 5, 1568-1579.          | 4.1  | 37        |
| 162 | A pulse chemisorption/reaction system for <i>in situ</i> and time-resolved DRIFTS studies of catalytic reactions on solid surfaces. Review of Scientific Instruments, 2014, 85, 064103.                       | 1.3  | 13        |

| #   | Article                                                                                                                                                                                                                       | IF           | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 163 | Crystalâ€Planeâ€Controlled Selectivity of Cu <sub>2</sub> O Catalysts in Propylene Oxidation with Molecular Oxygen. Angewandte Chemie - International Edition, 2014, 53, 4856-4861.                                           | 13.8         | 180       |
| 164 | Cu-Co Composite Oxides Supported on Multi-walled Carbon Nanotubes for Catalytic Removal of CO in a H2-rich Stream. Chinese Journal of Chemical Physics, 2014, 27, 523-529.                                                    | 1.3          | 4         |
| 165 | Reactivity of Oxygen Adatoms on Stepped Au(997) Surface toward NO and NO <sub>2</sub> . Journal of Physical Chemistry C, 2014, 118, 8397-8405.                                                                                | 3.1          | 12        |
| 166 | Engineering highly active TiO2 photocatalysts via the surface-phase junction strategy employing a titanate nanotube precursor. Journal of Catalysis, 2014, 310, 16-23.                                                        | 6.2          | 78        |
| 167 | Compositions, Structures, and Catalytic Activities of CeO <sub>2</sub> @Cu <sub>2</sub> O Nanocomposites Prepared by the Template-Assisted Method. Langmuir, 2014, 30, 6427-6436.                                             | 3 <b>.</b> 5 | 101       |
| 168 | Identification of Hydroxyl Groups on Au Surfaces Formed by $H < sub > 2 < / sub > O(a) + O(a)$ Reaction. Journal of Physical Chemistry C, 2014, 118, 26258-26263.                                                             | 3.1          | 12        |
| 169 | Active hydrogen species on TiO2 for photocatalytic H2 production. Physical Chemistry Chemical Physics, 2014, 16, 7051.                                                                                                        | 2.8          | 54        |
| 170 | Controllably Interfacing with Metal: A Strategy for Enhancing CO Oxidation on Oxide Catalysts by Surface Polarization. Journal of the American Chemical Society, 2014, 136, 14650-14653.                                      | 13.7         | 89        |
| 171 | CeO <sub>2</sub> Thickness-Dependent SERS and Catalytic Properties of CeO <sub>2</sub> -on-Ag Particles Synthesized by O <sub>2</sub> -Assisted Hydrothermal Method. Journal of Physical Chemistry C, 2014, 118, 19238-19245. | 3.1          | 20        |
| 172 | Sandwich SrTiO 3 /TiO 2 /H-Titanate nanofiber composite photocatalysts for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2014, 315, 314-322.                                                          | 6.1          | 27        |
| 173 | Influence and Removal of Capping Ligands on Catalytic Colloidal Nanoparticles. Catalysis Letters, 2014, 144, 1355-1369.                                                                                                       | 2.6          | 84        |
| 174 | Morphology-dependent surface chemistry and catalysis of CeO <sub>2</sub> nanocrystals. Catalysis Science and Technology, 2014, 4, 3772-3784.                                                                                  | 4.1          | 198       |
| 175 | Surface Chemistry of Formaldehyde on Rutile TiO <sub>2</sub> (110) Surface: Photocatalysis vs<br>Thermal-Catalysis. Journal of Physical Chemistry C, 2014, 118, 20420-20428.                                                  | 3.1          | 65        |
| 176 | Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 523-532.                                                             | 20.2         | 135       |
| 177 | Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol. Applied Surface Science, 2013, 280, 450-455.                                                              | 6.1          | 104       |
| 178 | CuOx–TiO2 junction: what is the active component for photocatalytic H2 production?. Physical Chemistry Chemical Physics, 2013, 15, 14956.                                                                                     | 2.8          | 110       |
| 179 | Crystal Plane-Dependent Surface Reactivity and Catalytic Property of Oxide Catalysts Studied with Oxide Nanocrystal Model Catalysts. Topics in Catalysis, 2013, 56, 1363-1376.                                                | 2.8          | 58        |
| 180 | Morphology Effect of CeO <sub>2</sub> Support in the Preparation, Metal–Support Interaction, and Catalytic Performance of Pt/CeO <sub>2</sub> Catalysts. ChemCatChem, 2013, 5, 3610-3620.                                     | 3.7          | 189       |

| #   | Article                                                                                                                                                                                                        | IF   | Citations  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| 181 | Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy. Scientific Reports, 2013, 3, 1625.                                                   | 3.3  | <b>7</b> 5 |
| 182 | Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst. Physical Chemistry Chemical Physics, 2013, 15, 12068.                     | 2.8  | 19         |
| 183 | Catalytically active structures of SiO <sub>2</sub> -supported Au nanoparticles in low-temperature CO oxidation. Catalysis Science and Technology, 2013, 3, 679-687.                                           | 4.1  | 87         |
| 184 | Enhancing catalytic selectivity of supported metal nanoparticles with capping ligands. Physical Chemistry Chemical Physics, 2013, 15, 2273.                                                                    | 2.8  | 44         |
| 185 | Evolution of surface and bulk structures of CexTi1-xO2 oxide composites. Chinese Journal of Catalysis, 2013, 34, 2075-2083.                                                                                    | 14.0 | 16         |
| 186 | Structure–activity relationship of CuO/MnO2 catalysts in CO oxidation. Applied Surface Science, 2013, 273, 357-363.                                                                                            | 6.1  | 109        |
| 187 | XPS and TPD study of NO interaction with Cu(111): Role of different oxygen species. Chinese Journal of Catalysis, 2013, 34, 964-972.                                                                           | 14.0 | 14         |
| 188 | Photocatalytic Cross-Coupling of Methanol and Formaldehyde on a Rutile TiO <sub>2</sub> (110) Surface. Journal of the American Chemical Society, 2013, 135, 5212-5219.                                         | 13.7 | 123        |
| 189 | Transformation of Carbon Monomers and Dimers to Graphene Islands on Co(0001): Thermodynamics and Kinetics. Journal of Physical Chemistry C, 2013, 117, 2952-2958.                                              | 3.1  | 21         |
| 190 | Structure sensitivity of low-temperature NO decomposition on Au surfaces. Journal of Catalysis, 2013, 304, 112-122.                                                                                            | 6.2  | 56         |
| 191 | Reactivity of Hydroxyls and Water on a CeO <sub>2</sub> (111) Thin Film Surface: The Role of Oxygen Vacancy. Journal of Physical Chemistry C, 2013, 117, 5800-5810.                                            | 3.1  | 154        |
| 192 | Crystalâ€Planeâ€Controlled Surface Chemistry and Catalytic Performance of Surfactantâ€Free Cu <sub>2</sub> O Nanocrystals. ChemSusChem, 2013, 6, 1966-1972.                                                    | 6.8  | 89         |
| 193 | Bifunctional TiO2 Catalysts for Efficient Cr(VI) Photoreduction Under Solar Light Irradiation Without Addition of Acids. Chinese Journal of Chemical Physics, 2012, 25, 214-218.                               | 1.3  | 7          |
| 194 | Selective CO Methanation over Ru Catalysts Supported on Nanostructured TiO2 with Different Crystalline Phases and Morphology. Chinese Journal of Chemical Physics, 2012, 25, 475-480.                          | 1.3  | 11         |
| 195 | Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2. Chinese Journal of Chemical Physics, 2012, 25, 103-109. | 1.3  | 37         |
| 196 | Size-Dependent Interaction of the Poly( <i>N</i> -vinyl-2-pyrrolidone) Capping Ligand with Pd Nanocrystals. Langmuir, 2012, 28, 6736-6741.                                                                     | 3.5  | 151        |
| 197 | A Photoemission Study of Ethylene Decomposition on a Co(0001) Surface: Formation of Different Types of Carbon Species. Journal of Physical Chemistry C, 2012, 116, 4167-4174.                                  | 3.1  | 21         |
| 198 | Oxygen Vacancy-Induced Novel Low-Temperature Water Splitting Reactions on FeO(111) Monolayer-Thick Film. Journal of Physical Chemistry C, 2012, 116, 22921-22929.                                              | 3.1  | 28         |

| #   | Article                                                                                                                                                                                                   | IF   | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | A density functional theory study of CF3CH2I adsorption and reaction on Ag(111). Surface Science, 2012, 606, 1227-1232.                                                                                   | 1.9  | 15        |
| 200 | Effect of reduction temperature on selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Applied Catalysis A: General, 2012, 433-434, 236-242.                                                | 4.3  | 37        |
| 201 | Shape-dependent interplay between oxygen vacancies and Ag–CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. Journal of Catalysis, 2012, 293, 195-204.                  | 6.2  | 303       |
| 202 | Adsorption and Surface Reaction of NO <sub>2</sub> on a Stepped Au(997) Surface: Enhanced Reactivity of Low-Coordinated Au Atoms. Journal of Physical Chemistry C, 2012, 116, 3608-3617.                  | 3.1  | 17        |
| 203 | Selective Aerobic Oxidation of Alcohols by Using Manganese Oxide Nanoparticles as an Efficient Heterogeneous Catalyst. Advanced Synthesis and Catalysis, 2012, 354, 569-573.                              | 4.3  | 50        |
| 204 | A DFT Study of the Structures of Au <sub><i>x</i></sub> Clusters on a CeO <sub>2</sub> (111) Surface. ChemPhysChem, 2012, 13, 1261-1271.                                                                  | 2.1  | 33        |
| 205 | Identification of active sites for CO and CH4 oxidation over PdO/Ce1â^'xPdxO2â^'Î' catalysts. Applied Catalysis B: Environmental, 2012, 119-120, 117-122.                                                 | 20.2 | 103       |
| 206 | å,¬åŒ−表é¢ç‰©ç†åŒ−å-¦çš"模型ä½"ç³»ç"ç©¶. Scientia Sinica Chimica, 2012, 42, 469-479.                                                                                                                         | 0.4  | 1         |
| 207 | Reduction of Cu2O nanocrystals: reactant-dependent influence of capping ligands and coupling between adjacent crystal planes. RSC Advances, 2011, 1, 1200.                                                | 3.6  | 25        |
| 208 | Surface Chemistry of C <sub>2</sub> H <sub>4</sub> , CO, and H <sub>2</sub> on Clean and Graphite Carbon-Modified Co(0001) Surfaces. Journal of Physical Chemistry C, 2011, 115, 3416-3424.               | 3.1  | 27        |
| 209 | Oxygen Vacancy-Controlled Reactivity of Hydroxyls on an FeO(111) Monolayer Film. Journal of Physical Chemistry C, 2011, 115, 6815-6824.                                                                   | 3.1  | 38        |
| 210 | Morphological Evolution of Cu <sub>2</sub> O Nanocrystals in an Acid Solution: Stability of Different Crystal Planes. Langmuir, 2011, 27, 665-671.                                                        | 3.5  | 170       |
| 211 | Hydroxyls-Involved Interfacial CO Oxidation Catalyzed by FeOx(111) Monolayer Islands Supported on Pt(111) and the Unique Role of Oxygen Vacancy. Journal of Physical Chemistry C, 2011, 115, 14290-14299. | 3.1  | 36        |
| 212 | Crystal Plane-Dependent Compositional and Structural Evolution of Uniform Cu <sub>2</sub> O<br>Nanocrystals in Aqueous Ammonia Solutions. Journal of Physical Chemistry C, 2011, 115, 20618-20627.        | 3.1  | 91        |
| 213 | Evidence for the Growth Mechanisms of Silver Nanocubes and Nanowires. Journal of Physical Chemistry C, 2011, 115, 7979-7986.                                                                              | 3.1  | 91        |
| 214 | Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO <sub>2</sub> Catalysts. Journal of Physical Chemistry C, 2011, 115, 19789-19796.                                                           | 3.1  | 115       |
| 215 | Size controlled synthesis of Pd nanoparticles inspired from the Wacker reaction and their catalytic performances. Catalysis Communications, $2011, 15, 56-59$ .                                           | 3.3  | 11        |
| 216 | Hydroxyls-induced oxygen activation on "inert―Au nanoparticles for low-temperature CO oxidation. Journal of Catalysis, 2011, 277, 95-103.                                                                 | 6.2  | 59        |

| #   | Article                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Finely Dispersed Au Nanoparticles on SiO <sub>2</sub> Achieved by the C <sub>60</sub> Additive and Their Catalytic Activity. ChemCatChem, 2011, 3, 161-166.                          | 3.7  | 8         |
| 218 | Cu2O-Au nanocomposites with novel structures and remarkable chemisorption capacity and photocatalytic activity. Nano Research, 2011, 4, 948-962.                                     | 10.4 | 49        |
| 219 | Revisiting H/Pt(111) by a combined experimental study of the H-D exchange reaction and first-principles calculations. Science China Chemistry, $2011$ , $54$ , $745$ - $755$ .       | 8.2  | 14        |
| 220 | Crystalâ€Planeâ€Controlled Surface Restructuring and Catalytic Performance of Oxide Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 12294-12298.                  | 13.8 | 149       |
| 221 | Au–Pd alloying-promoted thermal decomposition of PdO supported on SiO2 and its effect on the catalytic performance in CO oxidation. Catalysis Today, 2011, 164, 320-324.             | 4.4  | 63        |
| 222 | NO Adsorption on Ag/Pt(110)-( $1\tilde{A}$ —2) Bimetallic Surfaces: Unexpected Formation of Nitrite/nitrate Surface Species. Chinese Journal of Chemical Physics, 2011, 24, 735-740. | 1.3  | 0         |
| 223 | Comparative Investigation of Mo(CO)6 Adsorption on Clean and Oxidized Si(111) Surfaces. Chinese Journal of Chemical Physics, 2011, 24, 729-734.                                      | 1.3  | 3         |
| 224 | Generating oxygen adatoms on Au(997) by thermal decomposition of NO2. Science Bulletin, 2010, 55, 3889-3893.                                                                         | 1.7  | 7         |
| 225 | Understanding the deposition–precipitation process for the preparation of supported Au catalysts.<br>Journal of Molecular Catalysis A, 2010, 320, 97-105.                            | 4.8  | 34        |
| 226 | A density functional theory study of the CH2I2 reaction on Ag( $111$ ): Thermodynamics, kinetics, and electronic structures. Journal of Chemical Physics, 2010, 132, 024715.         | 3.0  | 6         |
| 227 | Photocatalytic Activity of N-doped TiO2 Photocatalysts Prepared from the Molecular Precursor (NH4)2TiO(C2O4)2. Chinese Journal of Chemical Physics, 2010, 23, 95-101.                | 1.3  | 16        |
| 228 | Shape-Dependent Reducibility of Cuprous Oxide Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 6676-6680.                                                                   | 3.1  | 88        |
| 229 | Water Adsorption on a Co(0001) Surface. Journal of Physical Chemistry C, 2010, 114, 17023-17029.                                                                                     | 3.1  | 53        |
| 230 | One-Step Synthesis of Bifunctional TiO <sub>2</sub> Catalysts and Their Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 7940-7948.                              | 3.1  | 66        |
| 231 | Synchrotron-Radiation Photoemission Study of Growth and Stability of Au Clusters on Rutile TiO2(110)-1 1. Chinese Journal of Chemical Physics, 2009, 22, 339-345.                    | 1.3  | 11        |
| 232 | A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts. Journal of Rare Earths, 2009, 27, 418-424.                                        | 4.8  | 76        |
| 233 | Influences of CeO2 microstructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation. Journal of Molecular Catalysis A, 2009, 306, 40-47.                      | 4.8  | 75        |
| 234 | Adsorption and reaction of Mo(CO)6 on chemically modified Pt(110) model surfaces. Journal of Molecular Catalysis A, 2009, 304, 16-21.                                                | 4.8  | 2         |

| #   | Article                                                                                                                                                                             | IF   | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Direct Evidence for the Interfacial Oxidation of CO with Hydroxyls Catalyzed by Pt/Oxide Nanocatalysts. Journal of the American Chemical Society, 2009, 131, 16366-16367.           | 13.7 | 86        |
| 236 | Influence of Speciation of Aqueous HAuCl <sub>4</sub> on the Synthesis, Structure, and Property of Au Colloids. Journal of Physical Chemistry C, 2009, 113, 6505-6510.              | 3.1  | 169       |
| 237 | Structure-activity Relation of Fe2O3–CeO2 Composite Catalysts in CO Oxidation. Catalysis Letters, 2008, 125, 160-167.                                                               | 2.6  | 197       |
| 238 | Restructuringâ€Induced Activity of SiO <sub>2</sub> â€Supported Large Au Nanoparticles in Lowâ€Temperature CO Oxidation. Chemistry - A European Journal, 2008, 14, 10595-10602.     | 3.3  | 26        |
| 239 | CH2I2 adsorption and dissociation on Ag(111) surface using density functional theory study. Chemical Physics Letters, 2008, 461, 47-52.                                             | 2.6  | 6         |
| 240 | Distinct oxidation behaviors of π-bonded and di-σ-bonded propylene on Ag(111). Catalysis Today, 2008, 131, 360-366.                                                                 | 4.4  | 7         |
| 241 | Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: Some mechanism insights. Journal of Catalysis, 2008, 255, 269-278.                                                         | 6.2  | 81        |
| 242 | Bifunctional N-Doped Mesoporous TiO <sub>2</sub> Photocatalysts. Journal of Physical Chemistry C, 2008, 112, 18150-18156.                                                           | 3.1  | 162       |
| 243 | Chemical etching induced shape change of magnetite microcrystals. Journal of Materials Chemistry, 2008, 18, 4286.                                                                   | 6.7  | 21        |
| 244 | Reduction of an $\hat{l}$ ±-Fe2O3(0001) Film Using Atomic Hydrogen. Journal of Physical Chemistry C, 2007, 111, 2198-2204.                                                          | 3.1  | 36        |
| 245 | Interfacial and Surface Structures of CeO <sub>2</sub> â^'TiO <sub>2</sub> Mixed Oxides. Journal of Physical Chemistry C, 2007, 111, 19078-19085.                                   | 3.1  | 68        |
| 246 | Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO <sub>2</sub> (110) Surface to Au Clusters. Journal of Physical Chemistry C, 2007, 111, 12434-12439.               | 3.1  | 156       |
| 247 | Ag/SiO2 catalysts prepared via $\hat{I}^3$ -ray irradiation and their catalytic activities in CO oxidation. Journal of Molecular Catalysis A, 2007, 274, 95-100.                    | 4.8  | 28        |
| 248 | Interaction of gas phase atomic hydrogen with Pt(111): Direct evidence for the formation of bulk hydrogen species. Science in China Series B: Chemistry, 2007, 50, 91-96.           | 0.8  | 7         |
| 249 | Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Applied Surface Science, 2007, 253, 8952-8961.                                                           | 6.1  | 315       |
| 250 | Effect of oxygen treatment on the catalytic activity of Au/SiO2 catalysts. Journal of Molecular Catalysis A, 2007, 264, 26-32.                                                      | 4.8  | 34        |
| 251 | Two-Photon Photoemission Spectroscopy Study of 1,3-Butadiene on $Cu(111)$ :Â Electronic Structures and Excitation Mechanism. Journal of Physical Chemistry B, 2006, 110, 5547-5552. | 2.6  | 2         |
| 252 | Mode-softening of C–H stretch vibration in alkyl groups on Ag(111) and the fluorination effect. Chemical Physics Letters, 2006, 428, 293-297.                                       | 2.6  | 5         |

| #   | Article                                                                                                                                                                                                 | IF   | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Influence of co-adsorbates on the methylene coupling reaction on Ag(111). Journal of Molecular Catalysis A, 2006, 245, 147-151.                                                                         | 4.8  | 8         |
| 254 | Autocatalytic partial reduction of FeO(111) and Fe3O4(111) films by atomic hydrogen. Surface Science, 2006, 600, 793-802.                                                                               | 1.9  | 63        |
| 255 | Surface chemistry of NO and NO2 on the Pt(110)-( $1\tilde{A}$ —2) surface: A comparative study. Surface Science, 2006, 600, 4860-4869.                                                                  | 1.9  | 26        |
| 256 | Co-doping of Iron and Cerium in Titanium Dioxide: Observation of a Cooperative Effect. Chinese Journal of Chemical Physics, 2006, 19, 539-542.                                                          | 1.3  | 9         |
| 257 | Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. Journal of Catalysis, 2005, 229, 446-458.                                                       | 6.2  | 174       |
| 258 | Restructuring and Redispersion of Silver on SiO2under Oxidizing/Reducing Atmospheres and Its Activity toward CO Oxidation. Journal of Physical Chemistry B, 2005, 109, 15842-15848.                     | 2.6  | 111       |
| 259 | Molecular-Level Understanding of the Catalytic Cycle of Dehydrogenation of Ethylbenzene to Styrene over Iron Oxide-Based Catalyst. Journal of Physical Chemistry B, 2005, 109, 9202-9204.               | 2.6  | 34        |
| 260 | Adsorption and decomposition of Mo(CO)6 on thin Al2O3 films: fabrication of metallic molybdenum model catalyst. Applied Surface Science, 2004, 229, 43-50.                                              | 6.1  | 18        |
| 261 | A Spectroscopic Investigation of Carbonâ° Carbon Bond Formation by Methylene Insertion on a Ag(111) Surface:Â Mechanism and Kinetics. Journal of the American Chemical Society, 2004, 126, 14527-14532. | 13.7 | 17        |
| 262 | On the Propagation Rate of the Chemical Waves Observed during the Course of CO Oxidation on a Ag/Pt(110) Composite Surface. Journal of Physical Chemistry B, 2004, 108, 8390-8396.                      | 2.6  | 5         |
| 263 | Decomposition of NO2 on Pt(110): formation of a new oxygen adsorption state. Surface Science, 2002, 506, L287-L292.                                                                                     | 1.9  | 23        |
| 264 | An AES, XPS and TDS study on the growth and property of silver thin film on the Pt()-( $1\tilde{A}$ –2) surface. Surface Science, 2002, 514, 420-425.                                                   | 1.9  | 11        |
| 265 | An atomic bricklaying rule during the initial growth of silver thin film on the $Pt(110)$ - $(1\tilde{A}$ – $2)$ surface. Surface Science, 2001, 478, L345-L348.                                        | 1.9  | 4         |
| 266 | Coupling between Adjacent Crystal Planes during CO + OadReaction on a Defective Pd(100) Surface. Langmuir, 2001, 17, 3629-3634.                                                                         | 3.5  | 14        |
| 267 | Adsorption and reaction of CO and O2 on the $Ag/Pt(110)$ surface studied by photoemission electron microscopy. Science Bulletin, 2001, 46, 998-1001.                                                    | 1.7  | 3         |
| 268 | Investigation of oxygen adsorption on Pd (100) with defects. Applied Surface Science, 2000, 158, 287-291.                                                                                               | 6.1  | 21        |
| 269 | Resolution deterioration in emission electron microscopy due to object roughness. Annalen Der Physik, 2000, 9, 441-451.                                                                                 | 2.4  | 22        |
| 270 | Direct observation of subsurface oxygen on the defects of Pd(100). Surface Science, 1999, 439, L803-L807.                                                                                               | 1.9  | 9         |