
Jian Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4800888/publications.pdf Version: 2024-02-01

ПАМТИ

#	Article	IF	CITATIONS
1	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	38.1	148
2	BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat. ACS Applied Materials & amp; Interfaces, 2022, 14, 12596-12605.	8.0	6
3	Carbon-efficient conversion of natural gas and natural-gas condensates to chemical products and intermediate feedstocks <i>via</i> catalytic metal–organic framework (MOF) chemistry. Energy and Environmental Science, 2022, 15, 2819-2842.	30.8	6
4	Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Applied Materials & Interfaces, 2021, 13, 20081-20093.	8.0	36
5	Zirconium Metal–Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS Applied Materials & Interfaces, 2021, 13, 22485-22494.	8.0	27
6	Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 30565-30575.	8.0	28
7	Two-Dimensional Pd Rafts Confined in Copper Nanosheets for Selective Semihydrogenation of Acetylene. Nano Letters, 2021, 21, 5620-5626.	9.1	18
8	Engineering Dendrimer-Templated, Metal–Organic Framework-Confined Zero-Valent, Transition-Metal Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 36232-36239.	8.0	10
9	Isomer of linker for NU-1000 yields a new she -type, catalytic, and hierarchically porous, Zr-based metal–organic framework. Chemical Communications, 2021, 57, 3571-3574.	4.1	25
10	The Molecular Path Approaching the Active Site in Catalytic Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 20090-20094.	13.7	21
11	Influence of Ni/Mo ratio on the structure-performance of ordered mesoporous Ni-Mo-O catalysts for oxidative dehydrogenation of propane. Catalysis Today, 2020, 339, 67-78.	4.4	40
12	Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. Journal of the American Chemical Society, 2020, 142, 18554-18564.	13.7	88
13	Node-Accessible Zirconium MOFs. Journal of the American Chemical Society, 2020, 142, 21110-21121.	13.7	103
14	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	11.2	40
15	Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chemical Communications, 2020, 56, 10409-10418.	4.1	168
16	Precise Control of Cu Nanoparticle Size and Catalytic Activity through Pore Templating in Zr Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 3078-3086.	6.7	21
17	Metal Hydroxide/Polymer Textiles for Decontamination of Toxic Organophosphates: An Extensive Study of Wettability, Catalytic Activity, and the Effects of Aggregation. ACS Applied Materials & Interfaces, 2019, 11, 31378-31385.	8.0	19
18	Restricting Polyoxometalate Movement Within Metal-Organic Frameworks to Assess the Role of Residual Water in Catalytic Thioether Oxidation Using These Dynamic Composites. Frontiers in Materials, 2019, 6, .	2.4	11

Jian Liu

#	Article	IF	CITATIONS
19	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	13.7	112
20	Toward Design Rules of Metal–Organic Frameworks for Adsorption Cooling: Effect of Topology on the Ethanol Working Capacity. Chemistry of Materials, 2019, 31, 2702-2706.	6.7	27
21	Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2019, 9, 3198-3207.	11.2	68
22	Metal–Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States. ACS Applied Materials & Interfaces, 2019, 11, 47822-47829.	8.0	39
23	Metal–Organic Framework Supported Single Site Chromium(III) Catalyst for Ethylene Oligomerization at Low Pressure and Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 2553-2557.	6.7	56
24	Electroactive Ferrocene at or near the Surface of Metal–Organic Framework UiO-66. Langmuir, 2018, 34, 4707-4714.	3.5	23
25	A Tunable Bimetallic MOFâ€74 for Adsorption Chiller Applications. European Journal of Inorganic Chemistry, 2018, 2018, 885-889.	2.0	41
26	Effect of Redox "Non-Innocent―Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 635-641.	8.0	52
27	Atomic layer deposition of molybdenum disulfide films using MoF6 and H2S. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	29
28	Nickel–Carbon–Zirconium Material Derived from Nickel-Oxide Clusters Installed in a Metal–Organic Framework Scaffold by Atomic Layer Deposition. Langmuir, 2018, 34, 14143-14150.	3.5	16
29	Highly-damped nanofiber mesh for ultrasensitive broadband acoustic flow detection. Journal of Micromechanics and Microengineering, 2018, 28, 095003.	2.6	7
30	Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells. Electrochimica Acta, 2018, 288, 12-19.	5.2	21
31	Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. Journal of the American Chemical Society, 2018, 140, 11174-11178.	13.7	94
32	Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation. Inorganic Chemistry Frontiers, 2017, 4, 820-824.	6.0	38
33	Electrospun metal–organic framework polymer composites for the catalytic degradation of methyl paraoxon. New Journal of Chemistry, 2017, 41, 8748-8753.	2.8	64
34	Vapor-phase polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/TiO2 composite fibers as electrode materials for supercapacitors. Electrochimica Acta, 2017, 224, 133-141.	5.2	38
35	Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 2017, 139, 15251-15258.	13.7	112
36	Poly(3,4-ethylenedioxythiophene) (PEDOT) infused TiO ₂ nanofibers: the role of hole transport layer in photocatalytic degradation of phenazopyridine as a pharmaceutical contaminant. RSC Advances, 2016, 6, 113884-113892.	3.6	19

Jian Liu

#	Article	IF	CITATIONS
37	Thermal stability of ZnO nanoparticle bound organic chromophores. Dyes and Pigments, 2016, 131, 69-75.	3.7	10
38	Surfactantâ€Free Palladium Nanoparticles Encapsulated in ZIFâ€8 Hollow Nanospheres for Sizeâ€5elective Catalysis in Liquidâ€Phase Solution. ChemCatChem, 2016, 8, 3224-3228.	3.7	43
39	The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 46-53.	3.9	18
40	Photocatalytic activity of TiO2 polycrystalline sub-micron fibers with variable rutile fraction. Applied Catalysis B: Environmental, 2016, 187, 154-162.	20.2	32
41	Effects of H2 annealing on polycrystalline copper substrates for graphene growth during low pressure chemical vapor deposition. Materials Letters, 2015, 153, 132-135.	2.6	17
42	Vapor phase polymerization and mechanical testing of highly electrically conductive poly(3,4-ethylenedioxythiophene) for flexible devices. Synthetic Metals, 2015, 209, 297-303.	3.9	20
43	Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors. Journal of Power Sources, 2015, 297, 195-201.	7.8	51
44	Progress in adsorption-based CO ₂ capture by metal–organic frameworks. Chemical Society Reviews, 2012, 41, 2308-2322.	38.1	1,205
45	A novel approach to prepare hybrid AlPO4/nano-carbon (graphite-like) (AlPO4/NCG) material from layer-structured AlPO4/Benzylamine. Materials Letters, 2010, 64, 905-907.	2.6	Ο