## DarÃ-o Spelzini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4800763/publications.pdf Version: 2024-02-01



ΠΑΡÃΟ SDELZINI

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Concentration of proteins and fat from whey by coacervation: Evaluation of its incorporation in bread. Journal of Food Processing and Preservation, 2022, 46, .                                                           | 2.0 | 1         |
| 2  | Are quinoa proteins a promising alternative to be applied in plant-based emulsion gel formulation?.<br>Food Chemistry, 2022, 394, 133485.                                                                                 | 8.2 | 19        |
| 3  | Acidâ€induced aggregation and gelation of heatâ€treated chia proteins. International Journal of Food<br>Science and Technology, 2021, 56, 1641-1648.                                                                      | 2.7 | 2         |
| 4  | Effects of the enzymatic hydrolysis treatment on functional and antioxidant properties of quinoa protein acid-induced gels. LWT - Food Science and Technology, 2020, 118, 108845.                                         | 5.2 | 35        |
| 5  | Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Research International, 2019, 116, 419-429.                                                         | 6.2 | 45        |
| 6  | Adsorption of chia proteins at interfaces: Kinetics of foam and emulsion formation and destabilization. Colloids and Surfaces B: Biointerfaces, 2019, 180, 503-507.                                                       | 5.0 | 13        |
| 7  | Characterization of acid – Induced gels of quinoa proteins and carrageenan. LWT - Food Science and<br>Technology, 2019, 108, 39-47.                                                                                       | 5.2 | 10        |
| 8  | The effect of carrageenan on the acid-induced aggregation and gelation conditions of quinoa proteins. Food Research International, 2018, 107, 683-690.                                                                    | 6.2 | 18        |
| 9  | "Structural characterization of protein isolates obtained from chia (Salvia hispanica L.) seeds― LWT -<br>Food Science and Technology, 2018, 90, 396-402.                                                                 | 5.2 | 28        |
| 10 | Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International<br>Journal of Biological Macromolecules, 2018, 109, 152-159.                                                         | 7.5 | 113       |
| 11 | A combined experimental and molecular simulation study of factors influencing interaction of<br>quinoa proteins–carrageenan. International Journal of Biological Macromolecules, 2018, 107, 949-956.                      | 7.5 | 19        |
| 12 | Peptidase from Aspergillus niger NRRL 3: Optimization of its production by solid-state fermentation, purification and characterization. LWT - Food Science and Technology, 2018, 98, 485-491.                             | 5.2 | 15        |
| 13 | Effects of extraction pH of chia protein isolates on functional properties. LWT - Food Science and Technology, 2018, 97, 523-529.                                                                                         | 5.2 | 27        |
| 14 | Milk protein suspensions enriched with three essential minerals: Physicochemical characterization<br>and aggregation induced by a novel enzymatic pool. Colloids and Surfaces B: Biointerfaces, 2016, 140,<br>452-459.    | 5.0 | 6         |
| 15 | Partition in aqueous two-phase system: Its application in downstream processing of tannase from Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 2013, 101, 392-397.                                            | 5.0 | 17        |
| 16 | Interaction of tannase from Aspergillus niger with polycations applied to its primary recovery.<br>Colloids and Surfaces B: Biointerfaces, 2013, 110, 480-484.                                                            | 5.0 | 1         |
| 17 | Purification of chymotrypsin from pancreas homogenate by adsorption onto non-soluble alginate beads. Process Biochemistry, 2011, 46, 801-805.                                                                             | 3.7 | 12        |
| 18 | Aqueous two-phase extraction and polyelectrolyte precipitation combination: A simple and<br>economically technologies for pepsin isolation from bovine abomasum homogenate. Process<br>Biochemistry, 2009, 44, 1260-1264. | 3.7 | 34        |

DARÃO SPELZINI

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pepsin extraction from bovine stomach using aqueous two-phase systems: Molecular mechanism and<br>influence of homogenate mass and phase volume ratio. Journal of Chromatography B: Analytical<br>Technologies in the Biomedical and Life Sciences, 2008, 873, 133-138. | 2.3 | 19        |
| 20 | Polyethyleneglycol–pepsin interaction and its relationship with protein partitioning in aqueous two-phase systems. Colloids and Surfaces B: Biointerfaces, 2008, 67, 151-156.                                                                                           | 5.0 | 28        |
| 21 | Chymotrypsin–poly vinyl sulfonate interaction studied by dynamic light scattering and turbidimetric<br>approaches. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1032-1037.                                                                             | 2.4 | 34        |
| 22 | Partition features and renaturation enhancement of chymosin in aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 860, 98-105.                                                                  | 2.3 | 31        |
| 23 | Polyethyleneimine phosphate and citrate systems act like pseudo polyampholytes as a starting method<br>to isolate pepsin. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life<br>Sciences, 2007, 860, 63-68.                                | 2.3 | 14        |
| 24 | Dependence of chymosin and pepsin partition coefficient with phase volume and polymer<br>pausidispersity in polyethyleneglycol–phosphate aqueous two-phase system. Colloids and Surfaces B:<br>Biointerfaces, 2006, 51, 80-85.                                          | 5.0 | 13        |
| 25 | Features of the acid protease partition in aqueous two-phase systems of polyethylene<br>glycol–phosphate: Chymosin and pepsin. Journal of Chromatography B: Analytical Technologies in the<br>Biomedical and Life Sciences, 2005, 821, 60-66.                           | 2.3 | 48        |
| 26 | Thermal Aggregation of Methyl Cellulose in Aqueous Solution: A Thermodynamic Study and Protein<br>Partitioning Behaviour. Cellulose, 2005, 12, 293-304.                                                                                                                 | 4.9 | 9         |