Yiping Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4800501/publications.pdf

Version: 2024-02-01

58	4,746	34	57
papers	citations	h-index	g-index
58	58	58	4314 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Applied Catalysis B: Environmental, 2018 , 229 , $96-104$.	20.2	656
2	Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Applied Catalysis B: Environmental, 2018, 221, 510-520.	20.2	443
3	Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Applied Catalysis B: Environmental, 2017, 207, 103-113.	20.2	438
4	Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Applied Catalysis B: Environmental, 2018, 227, 114-122.	20.2	275
5	Ordered Macroporous Carbonous Frameworks Implanted with CdS Quantum Dots for Efficient Photocatalytic CO ₂ Reduction. Advanced Materials, 2021, 33, e2102690.	21.0	164
6	Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation. Journal of Hazardous Materials, 2021, 401, 123257.	12.4	145
7	Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Chemosphere, 2017, 189, 643-651.	8.2	133
8	Degradation of indometacin by simulated sunlight activated CDs-loaded BiPO4 photocatalyst: Roles of oxidative species. Applied Catalysis B: Environmental, 2018, 221, 129-139.	20.2	133
9	Construction of novel Z-scheme nitrogen-doped carbon dots/{0 0 1} TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation: Mechanism insight, products and effects of natural water matrices. Chemical Engineering Journal, 2019, 356, 857-868.	12.7	124
10	Highly active metal-free carbon dots/g-C3N4 hollow porous nanospheres for solar-light-driven PPCPs remediation: Mechanism insights, kinetics and effects of natural water matrices. Water Research, 2020, 172, 115492.	11.3	113
11	One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. Journal of Hazardous Materials, 2020, 386, 121634.	12.4	111
12	Dual-Metal Hetero-Single-Atoms with Different Coordination for Efficient Synergistic Catalysis. Journal of the American Chemical Society, 2021, 143, 16068-16077.	13.7	110
13	Transformation and Removal of Tetrabromobisphenol A from Water in the Presence of Natural Organic Matter via Laccase-Catalyzed Reactions: Reaction Rates, Products, and Pathways. Environmental Science & Environmental Scienc	10.0	107
14	Decoration of TiO ₂ /g-C ₃ N ₄ Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin. RSC Advances, 2017, 7, 34096-34103.	3.6	104
15	Mechanism Insight into enhanced photodegradation of pharmaceuticals and personal care products in natural water matrix over crystalline graphitic carbon nitrides. Water Research, 2020, 180, 115925.	11.3	101
16	Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: Dechloridation, detoxicity, and a new superoxide radical model study. Chemical Engineering Journal, 2018, 332, 737-748.	12.7	98
17	The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C ₃ N ₄ hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate. Dalton Transactions, 2018, 47, 6924-6933.	3.3	81
18	Photocatalytic degradation of clofibric acid by g-C3N4/P25 composites under simulated sunlight irradiation: The significant effects of reactive species. Chemosphere, 2017, 172, 193-200.	8.2	78

#	Article	IF	CITATIONS
19	Degradation of triphenyl phosphate (TPhP) by CoFe2O4-activated peroxymonosulfate oxidation process: Kinetics, pathways, and mechanisms. Science of the Total Environment, 2019, 681, 331-338.	8.0	76
20	Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: Kinetics, pathways, and mechanisms. Chemical Engineering Journal, 2019, 361, 929-936.	12.7	73
21	Degradation of 14C-labeled few layer graphene via Fenton reaction: Reaction rates, characterization of reaction products, and potential ecological effects. Water Research, 2015, 84, 49-57.	11.3	72
22	Heteroaggregation of Graphene Oxide with Nanometer- and Micrometer-Sized Hematite Colloids: Influence on Nanohybrid Aggregation and Microparticle Sedimentation. Environmental Science & Emp; Technology, 2017, 51, 6821-6828.	10.0	70
23	Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C3N4 modified graphene oxide hydrogels. Journal of Hazardous Materials, 2022, 424, 127362.	12.4	70
24	A novel synthetic carbon and oxygen doped stalactite-like g-C3N4 for broad-spectrum-driven indometacin degradation. Journal of Hazardous Materials, 2020, 386, 121961.	12.4	66
25	Facile synthesis of carbon quantum dots loaded with mesoporous g-C ₃ N ₄ for synergistic absorption and visible light photodegradation of fluoroquinolone antibiotics. Dalton Transactions, 2018, 47, 1284-1293.	3.3	63
26	Ultrathin Ag2WO4-coated P-doped g-C3N4 nanosheets with remarkable photocatalytic performance for indomethacin degradation. Journal of Hazardous Materials, 2020, 392, 122355.	12.4	62
27	Template-free synthesis of oxygen-containing ultrathin porous carbon quantum dots/g-C ₃ N ₄ with superior photocatalytic activity for PPCPs remediation. Environmental Science: Nano, 2019, 6, 2565-2576.	4.3	55
28	Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: Mechanism; kinetic; and products. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 250-259.	5.3	51
29	Ultrathin Nanosheet Assembled Multishelled Superstructures for Photocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 4517-4527.	14.6	49
30	A photocatalytic degradation strategy of PPCPs by a heptazine-based CN organic polymer (OCN) under visible light. Environmental Science: Nano, 2018, 5, 2325-2336.	4.3	47
31	Defect-modified reduced graphitic carbon nitride (RCN) enhanced oxidation performance for photocatalytic degradation of diclofenac. Chemosphere, 2020, 258, 127343.	8.2	41
32	Integration of oxygen vacancies into BiOI via a facile alkaline earth ion-doping strategy for the enhanced photocatalytic performance toward indometacin remediation. Journal of Hazardous Materials, 2021, 412, 125147.	12.4	40
33	Facile hydrothermal synthesis of carbon dots (CDs) doped ZnFe2O4/TiO2 hybrid materials with high photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 10-18.	3.9	36
34	Metal Subâ€nanoclusters Confined within Hierarchical Porous Carbons with High Oxidation Activity. Angewandte Chemie - International Edition, 2021, 60, 10842-10849.	13.8	36
35	Heteroaggregation and sedimentation of graphene oxide with hematite colloids: Influence of water constituents and impact on tetracycline adsorption. Science of the Total Environment, 2019, 647, 708-715.	8.0	35
36	Dual metal-free polymer reactive sites for the efficient degradation of diclofenac by visible light-driven oxygen reduction to superoxide radical and hydrogen peroxide. Environmental Science: Nano, 2019, 6, 2577-2590.	4.3	30

#	Article	IF	CITATIONS
37	Phosphate-modified m-Bi2O4 enhances the absorption and photocatalytic activities of sulfonamide: Mechanism, reactive species, and reactive sites. Journal of Hazardous Materials, 2020, 384, 121443.	12.4	30
38	Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways. Environmental Science and Pollution Research, 2016, 23, 14294-14306.	5.3	28
39	Hierarchical Double-Shelled CoP Nanocages for Efficient Visible-Light-Driven CO ₂ Reduction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45609-45618.	8.0	28
40	Plasmonic Ag nanoparticles decorated copper-phenylacetylide polymer for visible-light-driven photocatalytic reduction of Cr(VI) and degradation of PPCPs: Performance, kinetics, and mechanism. Journal of Hazardous Materials, 2022, 425, 127599.	12.4	27
41	Regulating the Electronic Structure and Water Adsorption Capability by Constructing Carbonâ€Doped CuO Hollow Spheres for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2020, 13, 5711-5721.	6.8	23
42	Smart Removal of Dye Pollutants via Dark Adsorption and Light Desorption at Recyclable Bi ₂ O ₂ Co ₃ Nanosheets Interface. ACS Applied Materials & Interfaces, 2020, 12, 20490-20499.	8.0	23
43	Facile synthesis of solar light-driven Z-scheme Ag2CO3/TNS-001 photocatalyst for the effective degradation of naproxen: Mechanisms and degradation pathways. Separation and Purification Technology, 2021, 254, 117598.	7.9	21
44	Subnanometric Cu clusters on atomically Fe-doped MoO2 for furfural upgrading to aviation biofuels. Nature Communications, 2022, 13, 2591.	12.8	21
45	Comparison of lignin peroxidase and horseradish peroxidase for catalyzing the removal of nonylphenol from water. Environmental Science and Pollution Research, 2014, 21, 2358-2366.	5.3	19
46	N,Fe-Doped Carbon Dot Decorated Gear-Shaped WO3 for Highly Efficient UV-Vis-NIR-Driven Photocatalytic Performance. Catalysts, 2020, 10, 416.	3.5	16
47	Photochemical transformation of C3N4 under UV irradiation: Implications for environmental fate and photocatalytic activity. Journal of Hazardous Materials, 2020, 394, 122557.	12.4	15
48	Study of the simulated sunlight photolysis mechanism of ketoprofen: the role of superoxide anion radicals, transformation byproducts, and ecotoxicity assessment. Environmental Sciences: Processes and Impacts, 2017, 19, 1176-1184.	3.5	13
49	One-step synthesis of carbon nitride nanobelts for the enhanced photocatalytic degradation of organic pollutants through peroxydisulfate activation. Environmental Science: Nano, 2021, 8, 245-257.	4.3	13
50	Metal Oxide-Stabilized Hetero-Single-Atoms for Oxidative Cleavage of Biomass-Derived Isoeugenol to Vanillin. ACS Catalysis, 2022, 12, 8503-8510.	11.2	13
51	The fate and transformation of tetrabromobisphenol A in natural waters, mediated by oxidoreductase enzymes. Environmental Sciences: Processes and Impacts, 2017, 19, 596-604.	3.5	12
52	Transformation of atenolol by a laccase-mediator system: Efficiencies, effect of water constituents, and transformation pathways. Ecotoxicology and Environmental Safety, 2019, 183, 109555.	6.0	11
53	Interaction of graphene oxide with artificial cell membranes: Role of anionic phospholipid and cholesterol in nanoparticle attachment and membrane disruption. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111685.	5.0	11
54	Hydrogen generation from photocatalytic treatment of wastewater containing pharmaceuticals and personal care products by Oxygen-doped crystalline carbon nitride. Separation and Purification Technology, 2022, 296, 121425.	7.9	11

YIPING FENG

#	Article	IF	CITATIONS
55	<i>In Situ</i> Construction of Porous \hat{l}^2 -Bi ₂ O ₃ /BiOCOOH Heterojunction Photocatalysts: Enhancing Nitrogen Fixation Activity by the Synergistic Effect of Oxygen Vacancies and Lattice Oxygen. ACS Applied Energy Materials, 2022, 5, 9503-9511.	5.1	10
56	Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways, and toxicity assessment. Environmental Science and Pollution Research, 2017, 24, 10786-10795.	5.3	8
57	Transformation of carbon dots by ultraviolet irradiation, ozonation, and chlorination processes: kinetics and mechanisms. Environmental Science: Nano, 2022, 9, 324-334.	4.3	7
58	Metal Subâ€nanoclusters Confined within Hierarchical Porous Carbons with High Oxidation Activity. Angewandte Chemie, 2021, 133, 10937-10944.	2.0	0