
## Weiping Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4800422/publications.pdf Version: 2024-02-01



WEIDING HAN

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The altered lipidome of hepatocellular carcinoma. Seminars in Cancer Biology, 2022, 86, 445-456.                                                                                | 9.6  | 11        |
| 2  | SENP2 suppresses browning of white adipose tissues by de-conjugating SUMO from C/EBPβ. Cell Reports, 2022, 38, 110408.                                                          | 6.4  | 7         |
| 3  | Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis. Amino Acids, 2021,<br>53, 1807-1815.                                                            | 2.7  | 12        |
| 4  | HOXC10 Suppresses Browning to Maintain White Adipocyte Identity. Diabetes, 2021, 70, 1654-1663.                                                                                 | 0.6  | 5         |
| 5  | Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis. Science Translational Medicine, 2021, 13, . | 12.4 | 13        |
| 6  | 5-IP7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nature Metabolism, 2021, 3, 1400-1414.                | 11.9 | 13        |
| 7  | O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene, 2020, 39, 560-573.                                                                                   | 5.9  | 39        |
| 8  | Metabolic pathway analyses identify proline biosynthesis pathway as a promoter of liver tumorigenesis. Journal of Hepatology, 2020, 72, 725-735.                                | 3.7  | 71        |
| 9  | Give and take: competition for BCAAs in the tumour microenvironment. Nature Metabolism, 2020, 2, 657-658.                                                                       | 11.9 | 0         |
| 10 | Targeted Inhibition of Purine Metabolism Is Effective in Suppressing Hepatocellular Carcinoma<br>Progression. Hepatology Communications, 2020, 4, 1362-1381.                    | 4.3  | 22        |
| 11 | ELKS1 controls mast cell degranulation by regulating the transcription of Stxbp2 and Syntaxin 4 via<br>Kdm2b stabilization. Science Advances, 2020, 6, .                        | 10.3 | 7         |
| 12 | Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. ELife, 2020, 9, .                                       | 6.0  | 15        |
| 13 | The pancreatic beta cells: Still much to be learned. Seminars in Cell and Developmental Biology, 2020, 103, 1-2.                                                                | 5.0  | 1         |
| 14 | Malignant manipulaTORs of metabolism: suppressing BCAA catabolism to enhance mTORC1 activity.<br>Molecular and Cellular Oncology, 2019, 6, 1585171.                             | 0.7  | 5         |
| 15 | Seipin Knockout Mice Develop HeartÂFailure With Preserved EjectionÂFraction. JACC Basic To<br>Translational Science, 2019, 4, 924-937.                                          | 4.1  | 24        |
| 16 | Imaging Fibrogenesis in a Diet-Induced Model of Nonalcoholic Steatohepatitis (NASH). Contrast Media<br>and Molecular Imaging, 2019, 2019, 1-8.                                  | 0.8  | 6         |
| 17 | Indian Hedgehog links obesity to development of hepatocellular carcinoma. Oncogene, 2019, 38, 2206-2222.                                                                        | 5.9  | 22        |
| 18 | Loss of BCAA Catabolism during Carcinogenesis Enhances mTORC1 Activity and Promotes Tumor<br>Development and Progression. Cell Metabolism, 2019, 29, 1151-1165.e6.              | 16.2 | 144       |

WEIPING HAN

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Adipose specific disruption of seipin causes early-onset generalised lipodystrophy and altered fuel utilisation without severe metabolic disease. Molecular Metabolism, 2018, 10, 55-65.                 | 6.5 | 36        |
| 20 | Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin<br>Secretion Vesicles. Developmental Cell, 2018, 45, 347-361.e5.                                    | 7.0 | 73        |
| 21 | Epigenomic Control of Thermogenic Adipocyte Differentiation and Function. International Journal of<br>Molecular Sciences, 2018, 19, 1793.                                                                | 4.1 | 9         |
| 22 | O-GlcNAc as an Integrator of Signaling Pathways. Frontiers in Endocrinology, 2018, 9, 599.                                                                                                               | 3.5 | 94        |
| 23 | HOXC10 suppresses browning of white adipose tissues. Experimental and Molecular Medicine, 2017, 49, e292-e292.                                                                                           | 7.7 | 25        |
| 24 | miRNA-32 Drives Brown Fat Thermogenesis and Trans-activates Subcutaneous White Fat Browning in<br>Mice. Cell Reports, 2017, 19, 1229-1246.                                                               | 6.4 | 76        |
| 25 | Narciclasine attenuates diet-induced obesity by promoting oxidative metabolism in skeletal muscle.<br>PLoS Biology, 2017, 15, e1002597.                                                                  | 5.6 | 37        |
| 26 | Regulation of white and brown adipocyte differentiation by RhoGAP DLC1. PLoS ONE, 2017, 12, e0174761.                                                                                                    | 2.5 | 25        |
| 27 | Synaptotagminâ€11 inhibits clathrinâ€mediated and bulk endocytosis. EMBO Reports, 2016, 17, 47-63.                                                                                                       | 4.5 | 44        |
| 28 | Acetylome study in mouse adipocytes identifies targets of SIRT1 deacetylation in chromatin organization and RNA processing. Archives of Biochemistry and Biophysics, 2016, 598, 1-10.                    | 3.0 | 7         |
| 29 | Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice. Molecular Nutrition and Food Research, 2016, 60, 2565-2575.                                    | 3.3 | 32        |
| 30 | Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis.<br>Molecular Metabolism, 2016, 5, 1033-1041.                                                             | 6.5 | 40        |
| 31 | Molecular regulation of insulin granule biogenesis and exocytosis. Biochemical Journal, 2016, 473, 2737-2756.                                                                                            | 3.7 | 19        |
| 32 | Brefeldin Aâ€inhibited guanine nucleotide exchange protein 3 is localized in lysosomes and regulates<br><scp>GABA</scp> signaling in hippocampal neurons. Journal of Neurochemistry, 2016, 139, 748-756. | 3.9 | 6         |
| 33 | Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine, 2016, 48, e219-e219.                                                                                                  | 7.7 | 541       |
| 34 | Loss of Fas apoptosis inhibitory molecule leads to spontaneous obesity and hepatosteatosis. Cell<br>Death and Disease, 2016, 7, e2091-e2091.                                                             | 6.3 | 22        |
| 35 | Adiponectin is released via a unique regulated exocytosis pathway from a pre-formed vesicle pool on insulin stimulation. Biochemical Journal, 2015, 471, 381-389.                                        | 3.7 | 11        |
| 36 | An Actin Filament Population Defined by the Tropomyosin Tpm3.1 Regulates Glucose Uptake. Traffic, 2015, 16, 691-711.                                                                                     | 2.7 | 61        |

WEIPING HAN

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | NUCKS: a potential biomarker in cancer and metabolic disease. Clinical Science, 2015, 128, 715-721.                                                                                                                                                    | 4.3  | 20        |
| 38 | Hypothalamic NUCKS regulates peripheral glucose homoeostasis. Biochemical Journal, 2015, 469, 391-398.                                                                                                                                                 | 3.7  | 9         |
| 39 | Acetylome Analysis Identifies SIRT1 Targets in mRNA-Processing and Chromatin-Remodeling in Mouse Liver. PLoS ONE, 2015, 10, e0140619.                                                                                                                  | 2.5  | 8         |
| 40 | Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nature Communications, 2015, 6, 5951.                                                                                         | 12.8 | 74        |
| 41 | Increased biogenesis of glucagon-containing secretory granules and glucagon secretion in BIG3-knockout mice. Molecular Metabolism, 2015, 4, 246-252.                                                                                                   | 6.5  | 24        |
| 42 | TELP, a sensitive and versatile library construction method for next-generation sequencing. Nucleic Acids Research, 2015, 43, e35-e35.                                                                                                                 | 14.5 | 43        |
| 43 | Synaptotagmin-7 phosphorylation mediates GLP-1–dependent potentiation of insulin secretion from<br>β-cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112,<br>9996-10001.                                 | 7.1  | 65        |
| 44 | SIRT1 Interacts with and Deacetylates ATP6V1B2 in Mature Adipocytes. PLoS ONE, 2015, 10, e0133448.                                                                                                                                                     | 2.5  | 7         |
| 45 | Arp2/3 complex regulates adipogenesis by controlling cortical actin remodelling. Biochemical<br>Journal, 2014, 464, 179-192.                                                                                                                           | 3.7  | 22        |
| 46 | Insulin-stimulated leptin secretion requires calcium and PI3K/Akt activation. Biochemical Journal, 2014, 458, 491-498.                                                                                                                                 | 3.7  | 41        |
| 47 | Towards a mechanistic understanding of lipodystrophy and seipin functions. Bioscience Reports, 2014, 34, .                                                                                                                                             | 2.4  | 23        |
| 48 | Tropomodulin3 as the link between insulin-activated AKT2 and cortical actin remodeling in preparation of GLUT4 exocytosis. Bioarchitecture, 2014, 4, 210-214.                                                                                          | 1.5  | 4         |
| 49 | Motor neuropathyâ€associated mutation impairs Seipin functions in neurotransmission. Journal of<br>Neurochemistry, 2014, 129, 328-338.                                                                                                                 | 3.9  | 19        |
| 50 | Obesity accelerates <i>Helicobacter felis</i> -induced gastric carcinogenesis by enhancing immature<br>myeloid cell trafficking and T <sub>H</sub> 17 response. Gut, 2014, 63, 385-394.                                                                | 12.1 | 60        |
| 51 | Detection of insulin granule exocytosis by an electrophysiology method with high temporal resolution reveals enlarged insulin granule pool in BIG3-knockout mice. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E611-E618. | 3.5  | 11        |
| 52 | BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling. Human Molecular<br>Genetics, 2014, 23, 502-513.                                                                                                                            | 2.9  | 61        |
| 53 | Identification of Specific Cell-Surface Markers of Adipose-Derived Stem Cells from Subcutaneous and Visceral Fat Depots. Stem Cell Reports, 2014, 2, 171-179.                                                                                          | 4.8  | 135       |
| 54 | Leptin resistance and obesity in mice with deletion of methyl-CpG-binding protein 2 (MeCP2) in hypothalamic pro-opiomelanocortin (POMC) neurons. Diabetologia, 2014, 57, 236-245.                                                                      | 6.3  | 52        |

WEIPING HAN

| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | NUCKS Is a Positive Transcriptional Regulator of Insulin Signaling. Cell Reports, 2014, 7, 1876-1886.                                                                                                                                                                      | 6.4  | 38        |
| 56 | BIG3 inhibits insulin granule biogenesis and insulin secretion. EMBO Reports, 2014, 15, 714-22.                                                                                                                                                                            | 4.5  | 21        |
| 57 | Nuclear factor κB (NF-κB) suppresses food intake and energy expenditure in mice by directly activating the Pomc promoter. Diabetologia, 2013, 56, 925-936.                                                                                                                 | 6.3  | 51        |
| 58 | <i>In Vivo</i> hyperpolarized carbon-13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin-resistant mouse model. Hepatology, 2013, 57, 515-524.                                                                                    | 7.3  | 77        |
| 59 | Seipin regulates excitatory synaptic transmission in cortical neurons. Journal of Neurochemistry, 2013, 124, 478-489.                                                                                                                                                      | 3.9  | 24        |
| 60 | Seipin differentially regulates lipogenesis and adipogenesis through a conserved core sequence and an evolutionarily acquired C-terminus. Biochemical Journal, 2013, 452, 37-44.                                                                                           | 3.7  | 37        |
| 61 | Regulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase<br>MEC-17-dependent acetylation of α-tubulin. Biochemical Journal, 2013, 449, 605-612.                                                                                          | 3.7  | 46        |
| 62 | Novel Systems for Dynamically Assessing Insulin Action in Live Cells Reveals Heterogeneity in the Insulin Response. Traffic, 2013, 14, 259-273.                                                                                                                            | 2.7  | 27        |
| 63 | Altered Islet Morphology but Normal Islet Secretory Function In Vitro in a Mouse Model with Microvascular Alterations in the Pancreas. PLoS ONE, 2013, 8, e71277.                                                                                                          | 2.5  | 18        |
| 64 | Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homoeostasis. Bioscience Reports, 2012, 32, 423-432.                                                                                                        | 2.4  | 24        |
| 65 | Dual functions of adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper<br>containing 1 (APPL1) in insulin signaling and insulin secretion. Proceedings of the National Academy of<br>Sciences of the United States of America, 2012, 109, 8795-8796. | 7.1  | 4         |
| 66 | Calcium Sensing in Exocytosis. Advances in Experimental Medicine and Biology, 2012, 740, 731-757.                                                                                                                                                                          | 1.6  | 17        |
| 67 | Wip1-Dependent Regulation of Autophagy, Obesity, and Atherosclerosis. Cell Metabolism, 2012, 16, 68-80.                                                                                                                                                                    | 16.2 | 124       |
| 68 | An Inhibitory Effect of Extracellular Ca2+ on Ca2+-Dependent Exocytosis. PLoS ONE, 2011, 6, e24573.                                                                                                                                                                        | 2.5  | 5         |
| 69 | Increased Lipolysis and Energy Expenditure in a Mouse Model with Severely Impaired Glucagon<br>Secretion. PLoS ONE, 2011, 6, e26671.                                                                                                                                       | 2.5  | 11        |
| 70 | Delayed onset of hyperglycaemia in a mouse model with impaired glucagon secretion demonstrates<br>that dysregulated glucagon secretion promotes hyperglycaemia and type 2 diabetes. Diabetologia, 2011,<br>54, 415-422.                                                    | 6.3  | 10        |
| 71 | Synaptotagmin-7 as a positive regulator of glucose-induced glucagon-like peptide-1 secretion in mice.<br>Diabetologia, 2011, 54, 1824-1830.                                                                                                                                | 6.3  | 24        |
| 72 | Calcium Triggers Exocytosis from Two Types of Organelles in a Single Astrocyte. Journal of<br>Neuroscience, 2011, 31, 10593-10601.                                                                                                                                         | 3.6  | 86        |

Weiping Han

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Reduced Body Weight and Increased Energy Expenditure in Transgenic Mice Over-Expressing Soluble<br>Leptin Receptor. PLoS ONE, 2010, 5, e11669.                                                 | 2.5 | 42        |
| 74 | Linking type 2 diabetes and Alzheimer's disease. Proceedings of the National Academy of Sciences of the<br>United States of America, 2010, 107, 6557-6558.                                     | 7.1 | 94        |
| 75 | Neuronal Calcium Sensor Synaptotagmin-9 Is Not Involved in the Regulation of Glucose Homeostasis or Insulin Secretion. PLoS ONE, 2010, 5, e15414.                                              | 2.5 | 18        |
| 76 | Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion. Bioscience Reports, 2009, 29, 245-259.                                        | 2.4 | 84        |
| 77 | FoxO1 Inhibits Leptin Regulation of Pro-opiomelanocortin Promoter Activity by Blocking STAT3<br>Interaction with Specificity Protein 1. Journal of Biological Chemistry, 2009, 284, 3719-3727. | 3.4 | 81        |
| 78 | Synaptotagminâ€7 is a principal Ca <sup>2+</sup> sensor for Ca <sup>2+</sup> â€induced glucagon<br>exocytosis in pancreas. Journal of Physiology, 2009, 587, 1169-1178.                        | 2.9 | 87        |
| 79 | Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3992-3997. | 7.1 | 165       |
| 80 | Synaptotagmin VII as a Plasma Membrane Ca2+ Sensor in Exocytosis. Neuron, 2001, 30, 459-473.                                                                                                   | 8.1 | 207       |