Jihui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4799932/publications.pdf

Version: 2024-02-01

		53660	71532
77	15,148	45	76
papers	citations	h-index	g-index
77	77	77	12278
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The Quest for Stable Potassiumâ€lon Battery Chemistry. Advanced Materials, 2022, 34, e2106876.	11.1	41
2	All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy and Environmental Science, 2021, 14, 5044-5056.	15.6	41
3	Defect-mediated Rashba engineering for optimizing electrical transport in thermoelectric BiTel. Npj Computational Materials, 2020, 6, .	3.5	24
4	Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 2020, 120, 7795-7866.	23.0	950
5	Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu ₂ Se Composites. Advanced Materials, 2020, 32, e2003730.	11.1	99
6	Electron-phonon coupling and superconductivity in the doped topological crystalline insulator (Pb0.5Sn0.5)1â^'xInxTe. Physical Review B, 2020, 102, .	1.1	5
7	Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7713-7723.	5.2	84
8	Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5, 561-568.	19.8	526
9	Apparatus design for measuring of the strain dependence of the Seebeck coefficient of single crystals. Review of Scientific Instruments, 2020, 91, 023902.	0.6	1
10	Rationalizing the interphase stability of Li doped-Li ₇ La ₃ Zr ₂ O ₁₂ <i>via</i> automated reaction screening and machine learning. Journal of Materials Chemistry A, 2019, 7, 19961-19969.	5.2	59
11	Capacity Fading of Ni-Rich NCA Cathodes: Effect of Microcracking Extent. ACS Energy Letters, 2019, 4, 2995-3001.	8.8	297
12	Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 2273-2285.	15.6	512
13	Complex electronic structure and compositing effect in high performance thermoelectric BiCuSeO. Nature Communications, 2019, 10, 2814.	5.8	81
14	A multi-functional interface derived from thiol-modified mesoporous carbon in lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13372-13381.	5.2	17
15	Understanding the electrochemical potential and diffusivity of MnO/C nanocomposites at various charge/discharge states. Journal of Materials Chemistry A, 2019, 7, 7831-7842.	5.2	34
16	Reaction Mechanisms for Long-Life Rechargeable Zn/MnO ₂ Batteries. Chemistry of Materials, 2019, 31, 2036-2047.	3.2	195
17	Tuning self-healing properties of stiff, ion-conductive polymers. Journal of Materials Chemistry A, 2019, 7, 6773-6783.	5.2	34
18	Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4, 180-186.	19.8	2,101

#	Article	IF	Citations
19	Facilitating the Operation of Lithium-Ion Cells with High-Nickel Layered Oxide Cathodes with a Small Dose of Aluminum. Chemistry of Materials, 2018, 30, 3101-3109.	3.2	119
20	The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy and Environmental Science, 2018, 11, 1803-1810.	15.6	304
21	Fabrication and Thermoelectric Properties of n-Type CoSb _{2.85} Te _{0.15} Using Selective Laser Melting. ACS Applied Materials & Interfaces, 2018, 10, 13669-13674.	4.0	37
22	Thermo-element geometry optimization for high thermoelectric efficiency. Energy, 2018, 147, 672-680.	4.5	26
23	Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. National Science Review, 2018, 5, 59-69.	4.6	26
24	Water‣ubricated Intercalation in V ₂ O ₅ ·nH ₂ O for Highâ€Capacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	11.1	1,084
25	Designing solvate ionogel electrolytes with very high room-temperature conductivity and lithium transference number. Journal of Materials Chemistry A, 2018, 6, 24100-24106.	5.2	12
26	Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing. RSC Advances, 2018, 8, 15796-15803.	1.7	21
27	Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. Journal of Power Sources, 2018, 393, 75-82.	4.0	104
28	Dynamic process of the resonant phonon scattering in fully filled skutterudites. Physical Review B, 2018, 98, .	1.1	10
29	Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. Journal of Materials Processing Technology, 2018, 261, 74-85.	3.1	59
30	Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte. Journal of Power Sources, 2018, 396, 824-830.	4.0	54
31	Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Materials, 2017, 9, e343-e343.	3.8	170
32	The "electron crystal―behavior in copper chalcogenides Cu ₂ X (X = Se, S). Journal of Materials Chemistry A, 2017, 5, 5098-5105.	5. 2	81
33	Non-equilibrium synthesis and characterization of n-type Bi ₂ Te _{2.7} Se _{0.3} thermoelectric material prepared by rapid laser melting and solidification. RSC Advances, 2017, 7, 21439-21445.	1.7	40
34	Preparation of nâ€type Bi ₂ Te ₃ thermoelectric materials by nonâ€contact dispenser printing combined with selective laser melting. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700067.	1.2	34
35	Field-Effect Tuned Adsorption Dynamics of VSe ₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. Nano Letters, 2017, 17, 4109-4115.	4.5	134
36	Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy and Environmental Science, 2017, 10, 1590-1599.	15.6	115

#	Article	IF	CITATIONS
37	Solidâ€State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials. Advanced Materials, 2017, 29, 1701148.	11.1	110
38	Facile room temperature solventless synthesis of high thermoelectric performance Ag ₂ Se <i>via</i> a dissociative adsorption reaction. Journal of Materials Chemistry A, 2017, 5, 23243-23251.	5.2	79
39	Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549, 247-251.	13.7	472
40	Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. NPG Asia Materials, 2017, 9, e390-e390.	3.8	38
41	Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 2017, 12, 55-60.	15.6	216
42	High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics. NPG Asia Materials, 2016, 8, e285-e285.	3.8	102
43	On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. Npj Computational Materials, 2016, 2, .	3.5	399
44	Structure family and polymorphous phase transition in the compounds with soft sublattice: Cu2Se as an example. Journal of Chemical Physics, 2016, 144, 194502.	1.2	35
45	Electronegative guests in CoSb ₃ . Energy and Environmental Science, 2016, 9, 2090-2098.	15.6	93
46	High thermoelectric performance in Te-free (Bi,Sb) ₂ Se ₃ via structural transition induced band convergence and chemical bond softening. Energy and Environmental Science, 2016, 9, 3436-3447.	15.6	159
47	Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. Journal of Materials Chemistry A, 2016, 4, 15266-15280.	5.2	184
48	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 2016, 1 , .	19.8	2,186
49	Minimum Thermal Conductivity in Weak Topological Insulators with Bismuthâ€Based Stack Structure. Advanced Functional Materials, 2016, 26, 5360-5367.	7.8	29
50	Enhanced Thermoelectric Performance in Cu-Intercalated BiTel by Compensation Weakening Induced Mobility Improvement. Scientific Reports, 2015, 5, 14319.	1.6	33
51	Intrinsic low thermal conductivity in weakly ionic rocksalt structures. Physical Review B, 2015, 92, .	1.1	9
52	Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites. Scientific Reports, 2015, 5, 14641.	1.6	41
53	Diverse lattice dynamics in ternary Cu-Sb-Se compounds. Scientific Reports, 2015, 5, 13643.	1.6	51
54	On Intensifying Carrier Impurity Scattering to Enhance Thermoelectric Performance in Crâ€Doped Ce _y Co ₄ Sb ₁₂ . Advanced Functional Materials, 2015, 25, 6660-6670.	7.8	77

#	Article	IF	CITATIONS
55	Conductivity-limiting bipolar thermal conductivity in semiconductors. Scientific Reports, 2015, 5, 10136.	1.6	107
56	Compound defects and thermoelectric properties in ternary CuAgSe-based materials. Journal of Materials Chemistry A, 2015, 3, 13662-13670.	5.2	58
57	Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale. Journal of Materials Chemistry A, 2015, 3, 5385-5391.	5. 2	81
58	Multi-localization transport behaviour in bulk thermoelectric materials. Nature Communications, 2015, 6, 6197.	5.8	108
59	Thermopower enhancement in quantum wells with the Rashba effect. Applied Physics Letters, 2014, 105,	1.5	18
60	Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI. Physical Review B, 2014, 90,	1.1	74
61	Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15031-15035.	3.3	225
62	Probing Electrochemical Cycling Stability of Li-ion Cathode Materials at Atomic-scale. Microscopy and Microanalysis, 2014, 20, 452-453.	0.2	33
63	Polytypism in superhard transition-metal triborides. Scientific Reports, 2014, 4, 5063.	1.6	17
64	Chargeâ€Compensated Compound Defects in Gaâ€containing Thermoelectric Skutterudites. Advanced Functional Materials, 2013, 23, 3194-3203.	7.8	108
65	Condenson-related thermoelectric properties and formation of coherent nanoinclusions in Te-substituted In4Se3 compounds. Journal of Materials Chemistry A, 2013, 1, 15342.	5.2	4
66	Enhancement of thermoelectric performance in slightly charge-compensated Ce <i>y</i> Co4Sb12 skutterudites. Applied Physics Letters, 2013, 103, .	1.5	25
67	Thermoelectric performance of p-type skutterudites Yb <i>x</i> Fe <i>4</i> â°'yPt <i>y</i> Sb12 (0.8 â‰â€‰ <i>x</i> â‰â€‰1, <i>y</i> = 1 and 0.5). Journal of Applied Physics, 2013, 113, .	1.1	13
68	Electron and Phonon Transport in n- and p-type Skutterudites. Materials Research Society Symposia Proceedings, 2013, 1490, 9-18.	0.1	5
69	Rational Design of Advanced Thermoelectric Materials. Advanced Energy Materials, 2013, 3, 549-565.	10.2	264
70	Theoretical Study on Structural Stability of Fully Filled p-Type Skutterudites RETM4Sb12 (REÂ=ÂRare) Tj ETQq0 0	0 [gBT /Ov	verlock 10 Tf
71	Power factor enhancement in light valence band p-type skutterudites. Applied Physics Letters, 2012, 101,	1.5	26
72	Enhanced thermoelectric properties of Bi2(Te1â^'xSex)3-based compounds as n-type legs for low-temperature power generation. Journal of Materials Chemistry, 2012, 22, 20943.	6.7	147

#	Article	IF	CITATIONS
73	Thermoelectric properties of Ni-doped CeFe4Sb12 skutterudites. Journal of Applied Physics, 2012, 111, .	1.1	49
74	Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. Journal of the American Chemical Society, 2011, 133, 7837-7846.	6.6	1,242
75	Electrical Transport Properties of Filled CoSb3 Skutterudites: A Theoretical Study. Journal of Electronic Materials, 2009, 38, 1397-1401.	1.0	69
76	Thermoelectric Materials for Space and Automotive Power Generation. MRS Bulletin, 2006, 31, 224-229.	1.7	591
77	Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Energy Letters, 0, , 1550-1559.	8.8	20