
Takahide Sasaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4799348/publications.pdf Version: 2024-02-01

Τλκληίος δλολλλ

#	Article	IF	CITATIONS
1	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
2	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
3	Negative-strand RNA viruses: The plant-infecting counterparts. Virus Research, 2011, 162, 184-202.	2.2	167
4	Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 2018, 163, 2295-2310.	2.1	157
5	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
6	Targeting specific genes for RNA interference is crucial to the development of strong resistance to <i>Rice stripe virus</i> . Plant Biotechnology Journal, 2011, 9, 503-512.	8.3	72
7	Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. Journal of Virological Methods, 2010, 170, 90-93.	2.1	62
8	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
9	Molecular analysis and virus transmission tests place Olpidium virulentus, a vector of Mirafiori lettuce big-vein virus and tobacco stunt virus, as a distinct species rather than a strain of Olpidium brassicae. Journal of General Plant Pathology, 2006, 72, 20-25.	1.0	56
10	Transgenic strategies to confer resistance against viruses in rice plants. Frontiers in Microbiology, 2014, 4, 409.	3.5	54
11	The Nucleotide Sequence of RNA1 of Lettuce big-vein virus, Genus Varicosavirus, Reveals Its Relation to Nonsegmented Negative-Strand RNA Viruses. Virology, 2002, 297, 289-297.	2.4	51
12	Nucleotide sequence of RNA2 of Lettuce big-vein virus and evidence for a possible transcription termination/initiation strategy similar to that of rhabdoviruses. Journal of General Virology, 2004, 85, 2709-2717.	2.9	43
13	Strong Resistance Against <i>Rice grassy stunt virus</i> Is Induced in Transgenic Rice Plants Expressing Double-Stranded RNA of the Viral Genes for Nucleocapsid or Movement Proteins as Targets for RNA Interference. Phytopathology, 2013, 103, 513-519.	2.2	42
14	Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Research, 2011, 160, 400-403.	2.2	41
15	Detection and diagnosis of rice-infecting viruses. Frontiers in Microbiology, 2013, 4, 289.	3.5	39
16	Nucleotide sequence of the coat protein gene of Lettuce big-vein virus. Journal of General Virology, 2001, 82, 1509-1515.	2.9	33
17	Further Evidence of <i>Mirafiori lettuce big-vein virus</i> but Not of <i>Lettuce big-vein associated virus</i> with Big-Vein Disease in Lettuce. Phytopathology, 2008, 98, 464-468.	2.2	28
18	Rice Dwarf Viruses with Dysfunctional Genomes Generated in Plants Are Filtered Out in Vector Insects: Implications for the Origin of the Virus. Journal of Virology, 2011, 85, 2975-2979.	3.4	28

TAKAHIDE SASAYA

0

#	Article	IF	CITATIONS
19	Hairpin RNA derived from the gene for Pns9, a viroplasm matrix protein of Rice gall dwarf virus, confers strong resistance to virus infection in transgenic rice plants. Journal of Biotechnology, 2012, 157, 421-427.	3.8	27
20	Biological, Serological, and Molecular Variabilities of Clover Yellow Vein Virus. Phytopathology, 1997, 87, 1014-1019.	2.2	26
21	ICTV Virus Taxonomy Profile: Ophioviridae. Journal of General Virology, 2017, 98, 1161-1162.	2.9	26
22	The nonstructural protein pC6 of rice grassy stunt virus trans-complements the cell-to-cell spread of a movement-defective tomato mosaic virus. Archives of Virology, 2011, 156, 911-916.	2.1	23
23	Plant viruses and viroids in Japan. Journal of General Plant Pathology, 2022, 88, 105-127.	1.0	16
24	The movement protein encoded by gene 3 of rice transitory yellowing virus is associated with virus particles. Journal of General Virology, 2012, 93, 2290-2298.	2.9	15
25	Complete sequence analysis of rice transitory yellowing virus and its comparison to rice yellow stunt virus. Archives of Virology, 2010, 155, 243-245.	2.1	13
26	Identification of a movement protein of Mirafiori lettuce big-vein ophiovirus. Journal of General Virology, 2013, 94, 1145-1150.	2.9	12
27	Creation of transgenic rice plants producing small interfering RNA of <i>Rice tungro spherical virus</i> . GM Crops and Food, 2015, 6, 47-53.	3.8	12
28	Strengthening the Interaction of the Virology Community with the International Committee on Taxonomy of Viruses (ICTV) by Linking Virus Names and Their Abbreviations to Virus Species. Systematic Biology, 2019, 68, 828-839.	5.6	11
29	Recent progress in research on cell-to-cell movement of rice viruses. Frontiers in Microbiology, 2014, 5, 210.	3.5	10
30	Detection Methods for Rice Viruses by a Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP). Methods in Molecular Biology, 2015, 1236, 49-59.	0.9	9
31	Functional comparison of RNA silencing suppressor between the p5 protein of rice grassy stunt virus and the p3 protein of rice stripe virus. Virus Research, 2015, 203, 10-19.	2.2	6
32	Evaluation of the DAS-ELISA as a Detection Method for Rice stripe virus from Its Vector Insect, Small Brown Planthopper, Laodelphax striatellus. Japanese Journal of Applied Entomology and Zoology, 2013, 57, 113-116.	0.1	2
33	Varicosavirus. , 2011, , 2081-2085.		2
34	Preparation and characterization of polyclonal antibody against resting spores of Olpidium virulentus, fungal vector of lettuce big-vein disease. Journal of General Plant Pathology, 2013, 79, 64-68.	1.0	1
35	DAS-ELISA quantification of resting spores of Olpidium virulentus in roots and correlation between resting spore density in soil and severity of lettuce big-vein disease. Journal of General Plant Pathology, 2015, 81, 243-248.	1.0	0

36 Varicosaviruses (Rhabdoviridae). , 2021, , 833-838.