Uri Tabori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4798544/publications.pdf

Version: 2024-02-01

264 papers 24,014 citations

70 h-index 147 g-index

274 all docs

274 docs citations

times ranked

274

24834 citing authors

#	Article	IF	Citations
1	Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Medicine, 2017, 9, 34.	8.2	2,480
2	Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482, 226-231.	27.8	2,129
3	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	16.8	836
4	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	27.8	761
5	Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations. Cell, 2012, 148, 59-71.	28.9	743
6	Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. Journal of Clinical Oncology, 2016, 34, 2206-2211.	1.6	692
7	Comprehensive Analysis of Hypermutation in Human Cancer. Cell, 2017, 171, 1042-1056.e10.	28.9	596
8	Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 2014, 46, 451-456.	21.4	525
9	Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014, 506, 445-450.	27.8	521
10	Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma. Cancer Cell, 2011, 20, 143-157.	16.8	494
11	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	1.6	381
12	Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncology, The, 2016, 17, 1295-1305.	10.7	373
13	clMPACTâ€NOW update 6: new entity and diagnostic principle recommendations of the clMPACTâ€Utrecht meeting on future CNS tumor classification and grading. Brain Pathology, 2020, 30, 844-856.	4.1	363
14	Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncology, The, 2011, 12, 559-567.	10.7	345
15	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	10.7	307
16	Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nature Genetics, 2015, 47, 257-262.	21.4	306
17	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	10.7	274
18	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	7.7	271

#	Article	IF	CITATIONS
19	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
20	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
21	Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-Oncology, 2012, 14, 790-797.	1.2	248
22	<i>BRAF</i> Mutation and <i>CDKN2A</i> Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma. Journal of Clinical Oncology, 2015, 33, 1015-1022.	1.6	244
23	Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell, 2020, 37, 569-583.e5.	16.8	244
24	Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology, 2017, 35, 2934-2941.	1.6	232
25	<i>BRAF-KIAA1549</i> Fusion Predicts Better Clinical Outcome in Pediatric Low-Grade Astrocytoma. Clinical Cancer Research, 2011, 17, 4790-4798.	7.0	219
26	MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nature Genetics, 2016, 48, 273-282.	21.4	214
27	Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncology, The, 2013, 14, 534-542.	10.7	212
28	Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nature Communications, 2019, 10, 4343.	12.8	200
29	Phase II Study of Weekly Vinblastine in Recurrent or Refractory Pediatric Low-Grade Glioma. Journal of Clinical Oncology, 2012, 30, 1358-1363.	1.6	198
30	Excessive genomic DNA copy number variation in the Li–Fraumeni cancer predisposition syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11264-11269.	7.1	192
31	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	16.8	191
32	Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathologica, 2018, 136, 273-291.	7.7	190
33	TP53 Alterations Determine Clinical Subgroups and Survival of Patients With Choroid Plexus Tumors. Journal of Clinical Oncology, 2010, 28, 1995-2001.	1.6	189
34	Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor <i>MYBL1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8188-8193.	7.1	188
35	Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: Report from the constitutional mismatch repair deficiency consortium. European Journal of Cancer, 2014, 50, 987-996.	2.8	180
36	Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. Journal of Biomedical Science, 2018, 25, 22.	7.0	172

#	Article	IF	CITATIONS
37	Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathologica Communications, 2020, 8, 30.	5.2	172
38	Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. British Journal of Cancer, 2009, 101, 722-733.	6.4	163
39	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	1.6	160
40	Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nature Communications, 2014, 5, 4039.	12.8	159
41	Phase II Weekly Vinblastine for Chemotherapy-NaÃ ⁻ ve Children With Progressive Low-Grade Glioma: A Canadian Pediatric Brain Tumor Consortium Study. Journal of Clinical Oncology, 2016, 34, 3537-3543.	1.6	157
42	Clinical Management and Tumor Surveillance Recommendations of Inherited Mismatch Repair Deficiency in Childhood. Clinical Cancer Research, 2017, 23, e32-e37.	7.0	157
43	Universal Poor Survival in Children With Medulloblastoma Harboring Somatic <i>TP53</i> Mutations. Journal of Clinical Oncology, 2010, 28, 1345-1350.	1.6	148
44	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	7.7	146
45	Natural history and outcome of optic pathway gliomas in children. Pediatric Blood and Cancer, 2009, 53, 1231-1237.	1.5	141
46	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	30.7	141
47	Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas. Clinical Cancer Research, 2011, 17, 4650-4660.	7.0	135
48	Younger Age of Cancer Initiation Is Associated with Shorter Telomere Length in Li-Fraumeni Syndrome. Cancer Research, 2007, 67, 1415-1418.	0.9	134
49	Cancer and Central Nervous System Tumor Surveillance in Pediatric Neurofibromatosis 1. Clinical Cancer Research, 2017, 23, e46-e53.	7.0	133
50	DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. Journal of Clinical Investigation, 2018, 129, 223-229.	8.2	130
51	Efficacy and Safety of Dabrafenib in Pediatric Patients with ⟨i⟩BRAF⟨/i⟩ V600 Mutation–Positive Relapsed or Refractory Low-Grade Glioma: Results from a Phase I/IIa Study. Clinical Cancer Research, 2019, 25, 7303-7311.	7.0	128
52	Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 2018, 20, 160-173.	1.2	116
53	Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients?. Neuro-Oncology, 2016, 18, 291-297.	1.2	112
54	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	21.4	112

#	Article	IF	CITATIONS
55	Early aging in adult survivors of childhood medulloblastoma: long-term neurocognitive, functional, and physical outcomes. Neuro-Oncology, 2011, 13, 536-545.	1.2	111
56	Survival Benefit for Pediatric Patients With Recurrent Ependymoma Treated With Reirradiation. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1541-1548.	0.8	111
57	Clinical and treatment factors determining longâ€term outcomes for adult survivors of childhood lowâ€grade glioma: A populationâ€based study. Cancer, 2016, 122, 1261-1269.	4.1	109
58	Human Telomere Reverse Transcriptase Expression Predicts Progression and Survival in Pediatric Intracranial Ependymoma. Journal of Clinical Oncology, 2006, 24, 1522-1528.	1.6	106
59	<i>TP53</i> Mutation Is Frequently Associated With <i>CTNNB1</i> Mutation or <i>MYCN</i> Amplification and Is Compatible With Long-Term Survival in Medulloblastoma. Journal of Clinical Oncology, 2010, 28, 5188-5196.	1.6	100
60	Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathologica Communications, 2016, 4, 93.	5.2	100
61	A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer, 2019, 19, 1250.	2.6	93
62	Cancer Screening Recommendations and Clinical Management of Inherited Gastrointestinal Cancer Syndromes in Childhood. Clinical Cancer Research, 2017, 23, e107-e114.	7.0	91
63	Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer, 2005, 103, 2636-2642.	4.1	88
64	Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. European Journal of Cancer, 2015, 51, 977-983.	2.8	87
65	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	7.7	86
66	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	28.9	85
67	Optic pathway gliomas: a review. CNS Oncology, 2013, 2, 143-159.	3.0	84
68	Molecular Characterization of Choroid Plexus Tumors Reveals Novel Clinically Relevant Subgroups. Clinical Cancer Research, 2015, 21, 184-192.	7.0	84
69	Cancer and Central Nervous System Tumor Surveillance in Pediatric Neurofibromatosis 2 and Related Disorders. Clinical Cancer Research, 2017, 23, e54-e61.	7.0	76
70	Pediatric low-grade gliomas: implications of the biologic era. Neuro-Oncology, 2017, 19, now209.	1.2	73
71	The Role of Telomere Maintenance in the Spontaneous Growth Arrest of Pediatric Low-Grade Gliomas. Neoplasia, 2006, 8, 136-142.	5. 3	72
72	Choroid plexus tumors; management, outcome, and association with the Li–Fraumeni syndrome: The Children's Hospital Los Angeles (CHLA) experience, 1991–2010. Pediatric Blood and Cancer, 2012, 58, 905-909.	1.5	72

#	Article	IF	CITATIONS
73	Oncologic surveillance for subjects with biallelic mismatch repair gene mutations: 10 year followâ€up of a kindred. Pediatric Blood and Cancer, 2012, 59, 652-656.	1.5	72
74	Atypical Teratoid or Rhabdoid Tumors: Improved Outcome With High-dose Chemotherapy. Journal of Pediatric Hematology/Oncology, 2010, 32, e182-e186.	0.6	65
75	Fetal Reprogramming and Senescence in Hypoplastic Left Heart Syndrome and in Human Pluripotent Stem Cells during Cardiac Differentiation. American Journal of Pathology, 2013, 183, 720-734.	3.8	65
76	High frequency of mismatch repair deficiency among pediatric high grade gliomas in <scp>J</scp> ordan. International Journal of Cancer, 2016, 138, 380-385.	5.1	62
77	Outcomes of BRAF V600E Pediatric Gliomas Treated With Targeted BRAF Inhibition. JCO Precision Oncology, 2020, 4, 561-571.	3.0	62
78	Medulloblastoma in the second decade of life: A specific group with respect to toxicity and management. Cancer, 2005, 103, 1874-1880.	4.1	61
79	Cancer Stem Cells in Prostate Cancer: Implications for Targeted Therapy. Urologia Internationalis, 2017, 99, 125-136.	1.3	61
80	Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatric Blood and Cancer, 2010, 54, 476-479.	1.5	60
81	Risk of venous thromboembolism in pediatric patients with brain tumors. Pediatric Blood and Cancer, 2004, 43, 633-636.	1.5	57
82	Profound clinical and radiological response to BRAF inhibition in a 2â€monthâ€old diencephalic child with hypothalamic/chiasmatic glioma. Pediatric Blood and Cancer, 2016, 63, 2038-2041.	1.5	57
83	Combined genetic and epigenetic alterations of the <i>TERT</i> promoter affect clinical and biological behavior of bladder cancer. International Journal of Cancer, 2019, 144, 1676-1684.	5.1	57
84	Diagnostic criteria for constitutional mismatch repair deficiency (CMMRD): recommendations from the international consensus working group. Journal of Medical Genetics, 2022, 59, 318-327.	3.2	57
85	Monoallelic Expression Determines Oncogenic Progression and Outcome in Benign and Malignant Brain Tumors. Cancer Research, 2012, 72, 636-644.	0.9	56
86	The Cyclic AMP Pathway Is a Sex-Specific Modifier of Glioma Risk in Type I Neurofibromatosis Patients. Cancer Research, 2015, 75, 16-21.	0.9	56
87	A cancer specific hypermethylation signature of the TERT promoter predicts biochemical relapse in prostate cancer: a retrospective cohort study. Oncotarget, 2016, 7, 57726-57736.	1.8	55
88	Neural Tumor-Initiating Cells Have Distinct Telomere Maintenance and Can be Safely Targeted for Telomerase Inhibition. Clinical Cancer Research, 2011, 17, 111-121.	7.0	53
89	Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nature Medicine, 2022, 28, 125-135.	30.7	53
90	ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. European Journal of Cancer, 2020, 127, 52-66.	2.8	52

#	Article	IF	Citations
91	Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathologica, 2021, 141, 85-100.	7.7	52
92	Reirradiation in patients with diffuse intrinsic pontine gliomas: The Canadian experience. Pediatric Blood and Cancer, 2018, 65, e26988.	1.5	51
93	Response to Immune Checkpoint Inhibition in Two Patients with Alveolar Soft-Part Sarcoma. Cancer Immunology Research, 2018, 6, 1001-1007.	3.4	50
94	Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: Cure at a cost. Cancer, 2019, 125, 1867-1876.	4.1	49
95	Clinical implications of medulloblastoma subgroups: incidence of CSF diversion surgery. Journal of Neurosurgery: Pediatrics, 2015, 15, 236-242.	1.3	48
96	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
97	Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors. Acta Neuropathologica, 2014, 128, 853-862.	7.7	46
98	A comprehensive review of paediatric low-grade diffuse glioma: pathology, molecular genetics and treatment. Brain Tumor Pathology, 2017, 34, 51-61.	1.7	46
99	DNA Polymerase and Mismatch Repair Exert Distinct Microsatellite Instability Signatures in Normal and Malignant Human Cells. Cancer Discovery, 2021, 11, 1176-1191.	9.4	46
100	Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro-Oncology, 2020, 22, 773-784.	1.2	44
101	Duration of the preâ€diagnostic interval in medulloblastoma is subgroup dependent. Pediatric Blood and Cancer, 2014, 61, 1190-1194.	1.5	42
102	Telomere dysfunction and chromothripsis. International Journal of Cancer, 2016, 138, 2905-2914.	5.1	42
103	DNA methylation of the TERT promoter and its impact on human cancer. Current Opinion in Genetics and Development, 2020, 60, 17-24.	3.3	40
104	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	1.6	40
105	Survival Benefit for Individuals With Constitutional Mismatch Repair Deficiency Undergoing Surveillance. Journal of Clinical Oncology, 2021, 39, 2779-2790.	1.6	40
106	Favorable survival and metabolic outcome for children with diencephalic syndrome using a radiation-sparing approach. Journal of Neuro-Oncology, 2014, 116, 195-204.	2.9	39
107	Multiplex Detection of Pediatric Low-Grade Glioma Signature Fusion Transcripts and Duplications Using the NanoString nCounter System. Journal of Neuropathology and Experimental Neurology, 2017, 76, 562-570.	1.7	39
108	Differential patterns of metastatic dissemination across medulloblastoma subgroups. Journal of Neurosurgery: Pediatrics, 2018, 21, 145-152.	1.3	39

#	Article	IF	Citations
109	Clinical impact of combined epigenetic and molecular analysis of pediatric low-grade gliomas. Neuro-Oncology, 2020, 22, 1474-1483.	1.2	39
110	Survival and functional outcome of childhood spinal cord low-grade gliomas. Journal of Neurosurgery: Pediatrics, 2009, 4, 254-261.	1.3	38
111	Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma. Annals of Neurology, $2014, 75, 799-800.$	5.3	38
112	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	5.2	37
113	Vincristine and carboplatin chemotherapy for unresectable and/or recurrent lowâ€grade astrocytoma of the brainstem. Pediatric Blood and Cancer, 2010, 55, 471-477.	1.5	36
114	White matter compromise predicts poor intellectual outcome in survivors of pediatric low-grade glioma. Neuro-Oncology, 2015, 17, 604-613.	1.2	36
115	Distinctive clinical course and pattern of relapse in adolescents with medulloblastoma. International Journal of Radiation Oncology Biology Physics, 2006, 64, 402-407.	0.8	35
116	Primary analysis of a phase II trial of dabrafenib plus trametinib (dab + tram) in <i>BRAF</i> V600–mutant pediatric low-grade glioma (pLGG) Journal of Clinical Oncology, 2022, 40, LBA2002-LBA2002.	1.6	35
117	Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells. Acta Neuropathologica, 2014, 128, 863-877.	7.7	34
118	Possibilities of new therapeutic strategies in brain tumors. Cancer Treatment Reviews, 2010, 36, 335-341.	7.7	33
119	Feasibility and efficacy of repeated chemotherapy for progressive pediatric lowâ€grade gliomas. Pediatric Blood and Cancer, 2011, 57, 84-88.	1.5	33
120	Favorable outcome with conservative treatment for children with low grade brainstem tumors. Pediatric Blood and Cancer, 2012, 58, 556-560.	1.5	33
121	Genome-Wide DNA Methylation Analysis Reveals Epigenetic Dysregulation of MicroRNA-34A in <i>TP53</i> -Associated Cancer Susceptibility. Journal of Clinical Oncology, 2016, 34, 3697-3704.	1.6	33
122	Gastrointestinal Findings in the Largest Series of Patients With Hereditary Biallelic Mismatch Repair Deficiency Syndrome: Report from the International Consortium. American Journal of Gastroenterology, 2016, 111, 275-284.	0.4	33
123	An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathologica, 2020, 139, 703-715.	7.7	33
124	Explosive mutation accumulation triggered by heterozygous human Pol $\hat{l}\mu$ proofreading-deficiency is driven by suppression of mismatch repair. ELife, 2018, 7, .	6.0	33
125	Craniospinal irradiation as part of re-irradiation for children with recurrent intracranial ependymoma. Neuro-Oncology, 2019, 21, 547-557.	1.2	32
126	Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of <i>BRAF-</i> Mutated and <i>BRAF</i> -Fused Tumors. American Journal of Neuroradiology, 2021, 42, 759-765.	2.4	32

#	Article	IF	CITATIONS
127	Risk Stratification in Cancer Predisposition Syndromes: Lessons Learned from Novel Molecular Developments in Li-Fraumeni Syndrome: Figure 1 Cancer Research, 2008, 68, 2053-2057.	0.9	31
128	EZH2 expression is a prognostic factor in childhood intracranial ependymoma: A Canadian Pediatric Brain Tumor Consortium study. Cancer, 2015, 121, 1499-1507.	4.1	30
129	Pediatric High Grade Gliomas in the Context of Cancer Predisposition Syndromes. Journal of Korean Neurosurgical Society, 2018, 61, 319-332.	1.2	30
130	No correlation between NF1 mutation position and risk of optic pathway glioma in 77 unrelated NF1 patients. Human Genetics, 2016, 135, 469-475.	3.8	29
131	Optic pathway gliomas in adolescencetime to challenge treatment choices?. Neuro-Oncology, 2013, 15, 391-400.	1.2	27
132	An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: an update. Child's Nervous System, 2016, 32, 1789-1797.	1.1	26
133	Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma. Cell Reports Medicine, 2020, 1, 100038.	6.5	24
134	Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1. Acta Neuropathologica, 2021, 142, 179-189.	7.7	24
135	Ependymoma: lessons from the past, prospects for the future. Child's Nervous System, 2009, 25, 1383-1384.	1.1	23
136	Functional Repair Assay for the Diagnosis of Constitutional Mismatch Repair Deficiency From Non-Neoplastic Tissue. Journal of Clinical Oncology, 2019, 37, 461-470.	1.6	23
137	Germline-driven replication repair-deficient high-grade gliomas exhibit unique hypomethylation patterns. Acta Neuropathologica, 2020, 140, 765-776.	7.7	23
138	Volumetric assessment of tumor size changes in pediatric low-grade gliomas: feasibility and comparison with linear measurements. Neuroradiology, 2018, 60, 427-436.	2.2	22
139	Predictors of neuropsychological late effects and white matter correlates in children treated for a brain tumor without radiation therapy. Pediatric Blood and Cancer, 2019, 66, e27924.	1.5	22
140	Performance of the McGill Interactive Pediatric OncoGenetic Guidelines for Identifying Cancer Predisposition Syndromes. JAMA Oncology, 2021, 7, 1806.	7.1	22
141	DNA methylation signature is prognostic of choroid plexus tumor aggressiveness. Clinical Epigenetics, 2019, 11, 117.	4.1	21
142	Molecular correlates of cerebellar mutism syndrome in medulloblastoma. Neuro-Oncology, 2020, 22, 290-297.	1.2	21
143	Syndromes Predisposing to Pediatric Central Nervous System Tumors: Lessons Learned and New Promises. Current Neurology and Neuroscience Reports, 2012, 12, 153-164.	4.2	20
144	Epidermal growth factor receptorgene amplification and expression in disseminated pediatric low-grade gliomas. Journal of Neurosurgery: Pediatrics, 2005, 103, 357-361.	1.3	19

#	Article	IF	CITATIONS
145	The role of resection alone in select children with intracranial ependymoma: the Canadian Pediatric Brain Tumour Consortium experience. Child's Nervous System, 2015, 31, 57-65.	1.1	19
146	Mutations in the RAS/MAPK Pathway Drive Replication Repair–Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition. Cancer Discovery, 2021, 11, 1454-1467.	9.4	19
147	Primary Ewing's sarcoma affecting the central nervous system: a review and proposed prognostic considerations. Journal of Clinical Neuroscience, 2012, 19, 203-209.	1.5	18
148	Successful Treatment of a Recurrent Choroid Plexus Carcinoma with Surgery Followed by High-Dose Chemotherapy and Stem Cell Rescue. Pediatric Hematology and Oncology, 2013, 30, 386-391.	0.8	18
149	Multiple Brain Developmental Venous Anomalies as a Marker for Constitutional Mismatch Repair Deficiency Syndrome. American Journal of Neuroradiology, 2018, 39, 1943-1946.	2.4	18
150	Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: a 20-year experience. Journal of Neuro-Oncology, 2019, 145, 107-114.	2.9	18
151	Telomere Biology of Pediatric Cancer. Cancer Investigation, 2007, 25, 197-208.	1.3	17
152	The Changing Landscape of Pediatric Low-Grade Gliomas: Clinical Challenges and Emerging Therapies. Neuropediatrics, 2016, 47, 070-083.	0.6	17
153	The TERT hypermethylated oncologic region predicts recurrence and survival in pancreatic cancer. Future Oncology, 2017, 13, 2045-2051.	2.4	17
154	Isolated optic nerve gliomas: a multicenter historical cohort study. Journal of Neurosurgery: Pediatrics, 2017, 20, 549-555.	1.3	17
155	Sustained Response to Targeted Therapy in a Patient With Disseminated Anaplastic Pleomorphic Xanthoastrocytoma. Journal of Pediatric Hematology/Oncology, 2018, 40, 478-482.	0.6	17
156	Prognostic relevance of miRâ€124â€3p and its target <i>TP53INP1</i> in pediatric ependymoma. Genes Chromosomes and Cancer, 2017, 56, 639-650.	2.8	16
157	Video-Teleconferencing in Pediatric Neuro-Oncology: Ten Years of Experience. Journal of Global Oncology, 2018, 4, 1-7.	0.5	14
158	Repeat irradiation for children with supratentorial highâ€grade glioma. Pediatric Blood and Cancer, 2019, 66, e27881.	1.5	14
159	Cancers from Novel <i>Pole</i> -Mutant Mouse Models Provide Insights into Polymerase-Mediated Hypermutagenesis and Immune Checkpoint Blockade. Cancer Research, 2020, 80, 5606-5618.	0.9	14
160	Immune Checkpoint Inhibition as Primary Adjuvant Therapy for an IDH1-Mutant Anaplastic Astrocytoma in a Patient with CMMRD: A Case Report—Usage of Immune Checkpoint Inhibition in CMMRD. Current Oncology, 2021, 28, 757-766.	2.2	14
161	Non-random aneuploidy specifies subgroups of pilocytic astrocytoma and correlates with older age. Oncotarget, 2015, 6, 31844-31856.	1.8	14
162	Synchronous glioblastoma and medulloblastoma in a child with mismatch repair mutation. Child's Nervous System, 2016, 32, 553-557.	1.1	13

#	Article	IF	CITATIONS
163	Toxicity and outcome of children with treatment related acute myeloid leukemia. Pediatric Blood and Cancer, 2008, 50, 17-23.	1.5	12
164	Neural correlates of delayed visual–motor performance inÂchildren treated for brain tumours. Cortex, 2013, 49, 2140-2150.	2.4	12
165	An Integrative DNA Sequencing and Methylation Panel to Assess Mismatch Repair Deficiency. Journal of Molecular Diagnostics, 2021, 23, 242-252.	2.8	12
166	Clinical phenotypes and prognostic features of embryonal tumours with multi-layered rosettes: a Rare Brain Tumor Registry study. The Lancet Child and Adolescent Health, 2021, 5, 800-813.	5.6	12
167	Hearing Loss After Radiation and Chemotherapy for CNS and Head-and-Neck Tumors in Children. Journal of Clinical Oncology, 2021, 39, 3813-3821.	1.6	11
168	Dual role of allele-specific DNA hypermethylation within the TERT promoter in cancer. Journal of Clinical Investigation, $2021,131,.$	8.2	11
169	Causes of death in pediatric neuro-oncology: the sickkids experience from 2000 to 2017. Journal of Neuro-Oncology, 2020, 149, 181-189.	2.9	10
170	Position paper: Challenges and specific strategies for constitutional mismatch repair deficiency syndrome in lowâ€resource settings. Pediatric Blood and Cancer, 2020, 67, e28309.	1.5	10
171	Advances in the Management of Paediatric High-Grade Glioma. Current Oncology Reports, 2014, 16, 414.	4.0	9
172	Bevacizumab for pediatric radiation necrosis. Neuro-Oncology Practice, 2020, 7, 409-414.	1.6	9
173	Management of Acute Myeloblastic Leukemia in a Child With Biallelic Mismatch Repair Deficiency. Journal of Pediatric Hematology/Oncology, 2015, 37, e490-e493.	0.6	8
174	BRAF V600E mutant oligodendrogliomaâ€like tumors with chromosomal instability in adolescents and young adults. Brain Pathology, 2020, 30, 515-523.	4.1	8
175	Hearing loss and intellectual outcome in children treated for embryonal brain tumors: Implications for young children treated with radiation sparing approaches. Cancer Medicine, 2021, 10, 7111-7125.	2.8	8
176	Immune Checkpoint Inhibition as Single Therapy for Synchronous Cancers Exhibiting Hypermutation: An IRRDC Study. JCO Precision Oncology, 2022, 6, e2100286.	3.0	8
177	Ongoing issues with the management of children with Constitutional Mismatch Repair Deficiency syndrome. European Journal of Medical Genetics, 2019, 62, 103706.	1.3	7
178	B-cell acute lymphoblastic leukemia with high mutation burden presenting in a child with constitutional mismatch repair deficiency. Blood Advances, 2019, 3, 1795-1798.	5.2	7
179	Paediatric systemic lupus erythematosus as a manifestation of constitutional mismatch repair deficiency. Journal of Medical Genetics, 2020, 57, 505-508.	3.2	7
180	Germline Biallelic Mismatch Repair Deficiency in Childhood Glioblastoma and Implications for Clinical Management. Neurology India, 2022, 70, 772.	0.4	7

#	Article	IF	CITATIONS
181	Promises and challenges of exhausting pediatric neural cancer stem cells. Pediatric Research, 2012, 71, 523-528.	2.3	6
182	Delineating a new feature of constitutional mismatch repair deficiency (CMMRD) syndrome: breast cancer. Familial Cancer, 2019, 18, 105-108.	1.9	6
183	Clinical and molecular characterization of a multi-institutional cohort of pediatric spinal cord low-grade gliomas. Neuro-Oncology Advances, 2020, 2, vdaa103.	0.7	6
184	Upfront Adjuvant Immunotherapy of Replication Repair–Deficient Pediatric Glioblastoma With Chemoradiation-Sparing Approach. JCO Precision Oncology, 2021, 5, 1426-1431.	3.0	6
185	Paediatric atypical choroid plexus papilloma: is adjuvant therapy necessary?. Journal of Neuro-Oncology, 2021, 155, 63-70.	2.9	6
186	Gliomas in the context of Li-Fraumeni syndrome: An international cohort Journal of Clinical Oncology, 2019, 37, 1517-1517.	1.6	6
187	Low prevalence of complications in severe neutropenic children with cancer in the unprotected environment of an overnight camp. Pediatric Blood and Cancer, 2007, 48, 148-151.	1.5	5
188	Pilot study of nivolumab in pediatric patients with hypermutant cancers Journal of Clinical Oncology, 2021, 39, 10011-10011.	1.6	5
189	Re-evaluating surgery and re-irradiation for locally recurrent pediatric ependymoma – a multi-institutional study. Neuro-Oncology Advances, 2021, 3, vdab158.	0.7	5
190	<scp>COVID</scp> â€19: a pandemic experience that illuminates potential reforms to health research. EMBO Molecular Medicine, 2020, 12, e13278.	6.9	4
191	Building the ecosystem for pediatric neuroâ€oncology care in Pakistan: Results of a 7â€year long twinning program between Canada and Pakistan. Pediatric Blood and Cancer, 2022, 69, e29726.	1.5	4
192	Optic Pathway Glioma in Children with Neurofibromatosis Type 1: A Multidisciplinary Entity, Posing Dilemmas in Diagnosis and Management Multidisciplinary Management of Optic Pathway Glioma in Children with Neurofibromatosis Type 1. Frontiers in Surgery, 2022, 9, 886697.	1.4	4
193	Ventricular size determination and management of ventriculomegaly and hydrocephalus in patients with diffuse intrinsic pontine glioma: an institutional experience. Journal of Neurosurgery, 2021, 135, 1139-1145.	1.6	3
194	Relationship of BRAF V600E and associated secondary mutations on survival rate and response to conventional therapies in childhood low-grade glioma Journal of Clinical Oncology, 2016, 34, 10509-10509.	1.6	3
195	Cancer Predisposition in Children with Brain Tumors. , 2015, , 69-89.		3
196	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e348-e349.	1.6	2
197	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e347-e347.	1.6	2
198	Hot topics in epigenetic regulation of cancer self-renewal for pancreatic tumors: future trends. Future Oncology, 2019, 15, 683-685.	2.4	2

#	Article	IF	CITATIONS
199	Neuropsychological impact of trametinib in pediatric lowâ€grade glioma: A case series. Pediatric Blood and Cancer, 2020, 67, e28690.	1.5	2
200	Salvage chemotherapy after failure of targeted therapy in a child with BRAF V600E lowâ€grade glioma. Pediatric Blood and Cancer, 2021, 68, e28561.	1.5	2
201	Reâ€irradiation with concurrent BRAF and MEK inhibitor therapy. Pediatric Blood and Cancer, 2021, 68, e28838.	1.5	2
202	SYST-04. TRAM-01: A PHASE 2 STUDY OF TRAMETINIB FOR PATIENTS WITH PEDIATRIC GLIOMA WITH ACTIVATION OF THE MAPK/ERK PATHWAY. Neuro-Oncology Advances, 2021, 3, iv9-iv9.	0.7	2
203	Weekly vinblastine in chemotherapy-naive children with unresectable or progressive low grade glioma: A Canadian cooperative study Journal of Clinical Oncology, 2013, 31, 10029-10029.	1.6	2
204	IMMU-17. Comprehensive immunological gene expression profiling of pediatric brain tumors. Neuro-Oncology, 2022, 24, i85-i85.	1.2	2
205	A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway Journal of Clinical Oncology, 2022, 40, 2042-2042.	1.6	2
206	Chronic Residual Lesions in Metastatic Medulloblastoma Patients. Journal of Pediatric Hematology/Oncology, 2014, 36, 71-75.	0.6	1
207	LG-19IMMUNOHISTOCHEMISTRY IS HIGHLY SENSITIVE AND SPECIFIC FOR THE DETECTION OF BRAF V600E STATUS IN PEDIATRIC LOW-GRADE GLIOMA. Neuro-Oncology, 2016, 18, iii82.3-iii82.	1.2	1
208	Translational Childhood Cancer Genomics. JAMA Oncology, 2016, 2, 384.	7.1	1
209	RTHP-34. CRANIOSPINAL IRRADIATION (CSI) AS PART OF RE-IRRADIATION (RT2) FOR CHILDREN WITH RECURRENT INTRACRANIAL EPENDYMOMA. Neuro-Oncology, 2018, 20, vi232-vi232.	1.2	1
210	LGG-60. THE GENETIC LANDSCAPE OF PEDIATRIC LOW-GRADE GLIOMAS: INCIDENCE, PROGNOSIS AND RESPONSE TO THERAPY. Neuro-Oncology, 2018, 20, i117-i117.	1.2	1
211	Pediatric Central Nervous System Cancer Predisposition. , 2021, , 23-54.		1
212	IMMU-18. FAVORABLE OUTCOME IN REPLICATION REPAIR DEFICIENT HYPERMUTANT BRAIN TUMORS TO IMMUNE CHECKPOINT INHIBITION: AN INTERNATIONAL RRD CONSORTIUM REGISTRY STUDY. Neuro-Oncology, 2020, 22, iii363-iii363.	1.2	1
213	MBRS-54. POOR SURVIVAL IN REPLICATION REPAIR DEFICIENT HYPERMUTANT MEDULLOBLASTOMA AND CNS EMBRYONAL TUMORS: A REPORT FROM THE INTERNATIONAL RRD CONSORTIUM. Neuro-Oncology, 2020, 22, iii407-iii407.	1.2	1
214	Outcome of neurofibromatosis type 1 patients treated with first line vinblastine for optic pathway gliomas: A Canadian multicenter study Journal of Clinical Oncology, 2015, 33, 2019-2019.	1.6	1
215	Re-irradiation for relapsed paediatric ependymoma Journal of Clinical Oncology, 2016, 34, 10565-10565.	1.6	1
216	IMMU-14. IMMUNE CHECKPOINT INHIBITOR THERAPY FOR TREATMENT OF SYNCHRONOUS CANCERS IN PAEDIATRIC PATIENTS WITH CONSTITUTIONAL MISMATCH REPAIR DEFICIENCY. Neuro-Oncology, 2020, 22, iii362-iii362.	1.2	1

#	Article	IF	CITATIONS
217	Leptomeningeal Dissemination of Low-Grade Neuroepithelial Tumor with FGFR1_TACC1 Fusion with Clinical and Radiographic Response to Pazopanib and Topotecan. Pediatric Neurosurgery, 2022, 57, 63-68.	0.7	1
218	Germline predisposition to glial neoplasms in children and young adults: A narrative review. Glioma (Mumbai, India), 2021, 4, 68.	0.1	1
219	A novel central nervous system embryonal tumor successfully treated with multiâ€modal therapy highlights limitation of methylationâ€based tumor classification. Pediatric Blood and Cancer, 2022, 69, e29520.	1.5	1
220	IMMU-13. Dual CTLA4/ PD-1 blockade improves survival for replication-repair deficient high-grade gliomas failing single agent PD-1 inhibition: An IRRDC study. Neuro-Oncology, 2022, 24, i84-i84.	1.2	1
221	MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. Neuro-Oncology, 2022, 24, i107-i107.	1.2	1
222	Hereditary Predisposition to Primary CNS Tumors. Molecular Pathology Library, 2015, , 1-22.	0.1	0
223	LG-66CLINICAL AND TREATMENT FACTORS DETERMINING LONG-TERM OUTCOMES FOR ADULT SURVIVORS OF CHILDHOOD LOW-GRADE GLIOMA: A POPULATION-BASED STUDY. Neuro-Oncology, 2016, 18, iii94.1-iii94.	1.2	O
224	HG-80ISSUES IN THE MANAGEMENT OF CHILDREN WITH BRAIN TUMORS AND BIALLELIC MISMATCH GENE REPAIR DEFICIENCY SYNDROME. Neuro-Oncology, 2016, 18, iii66.5-iii67.	1.2	0
225	Reply to D.T.W. Jones et al. Journal of Clinical Oncology, 2018, 36, 97-97.	1.6	O
226	LGG-10. EPIGENETIC/GENETIC/MORPHOLOGIC ANALYSES REVEAL CLINICAL/PROGNOSTIC INSIGHT OF PEDIATRIC LOW GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i106-i106.	1.2	0
227	HGG-17. TUMOR MUTATIONAL BURDEN ANALYSIS OF PEDIATRIC TUMORS PROVIDES A DIAGNOSTIC TOOL FOR GERMLINE REPLICATION REPAIR DEFICIENCY AND PREDICT RESPONSE TO IMMUNE CHECKPOINT INHIBITION. Neuro-Oncology, 2018, 20, i92-i92.	1.2	0
228	EAPH-06. HYPERMUTANT PEDIATRIC HIGH GRADE GLIOMAS ARE DRIVEN BY RAS/MAPK MUTATIONS AND RESPOND TO MEK INHIBITION. Neuro-Oncology, 2018, 20, i66-i66.	1.2	0
229	HGG-20. DNA METHYLATION ANALYSIS OF HIGH-GRADE GLIOMA IN PATIENTS WITH MISMATCH REPAIR DEFICIENCIES. Neuro-Oncology, 2018, 20, i92-i93.	1.2	O
230	LGG-49. MOLECULAR ALTERATIONS IN PREGNANT ADOLESCENT AND YOUNG ADULT WOMEN WITH GLIOMA. Neuro-Oncology, 2018, 20, i115-i115.	1.2	0
231	LGG-59. REMARKABLE OBJECTIVE RESPONSE AND FAVORABLE SURVIVAL FOR BRAF-V600E CHILDHOOD LOW-GRADE GLIOMAS TO BRAF INHIBITORS COMPARED CONVENTIONAL CHEMOTHERAPY. Neuro-Oncology, 2018, 20, i117-i117.	1.2	O
232	When Parallel Roads Meet: Orchestrating Collaborations Between Regulatory, Ethical, and Business Partners in Translational Medicine. Frontiers in Medicine, 2019, 6, 87.	2.6	0
233	LGG-07. CLINICAL FEATURES OF NON-CANONICAL MOLECULAR DRIVERS IN PLGG; AN UPDATE FORM THE INTERNATIONAL PLGG TASKFORCE. Neuro-Oncology, 2019, 21, ii100-ii100.	1.2	O
234	IMMU-20. IMMUNE AND TUMOR BIOMARKERS OF OUTCOME IN REPLICATION REPAIR DEFICIENT BRAIN TUMORS TREATED WITH IMMUNE CHECKPOINT INHIBITORS: UPDATES FROM THE INTERNATIONAL REPLICATION REPAIR DEFICIENCY CONSORTIUM. Neuro-Oncology, 2019, 21, ii96-ii97.	1.2	0

#	Article	IF	CITATIONS
235	LGG-01. BRAF V600E MUTANT OLIGODENDROGLIOMA-LIKE TUMORS WITH CHROMOSOMAL INSTABILITY IN ADOLESCENT AND YOUNG ADULT. Neuro-Oncology, 2019, 21, ii98-ii98.	1.2	0
236	HGG-19. MOLECULAR ANALYSIS UNCOVERS 3 DISTINCT SUBGROUPS AND MULTIPLE TARGETABLE GENE FUSIONS IN INFANT GLIOMAS. Neuro-Oncology, 2019, 21, ii90-ii91.	1.2	0
237	LGG-16. PREDICTORS OF OUTCOME IN BRAF-V600E PEDIATRIC GLIOMAS TREATED WITH BRAF INHIBITORS: A REPORT FROM THE PLGG TASKFORCE. Neuro-Oncology, 2019, 21, ii102-ii102.	1.2	0
238	TMOD-10. REPLICATION REPAIR DEFICIENT MOUSE MODELS PROVIDE INSIGHT ON HYPERMUTANT BRAIN TUMOURS AND COMBINATIONAL IMMUNOTHERAPY. Neuro-Oncology, 2019, 21, ii123-ii123.	1.2	0
239	OMRT-8. Precision targeting of cellular pathways with complementary diagnostics. Neuro-Oncology Advances, 2021, 3, ii8-ii8.	0.7	0
240	Abstract 1165: Complementary diagnostics for precision targeting of cellular pathways., 2021,,.		0
241	Genetics of progression of pleomorphic xanthoastrocytoma (PXA) in the pediatric population. FASEB Journal, 2008, 22, 172.1.	0.5	0
242	Biochemical and imaging surveillance for Li-Fraumeni syndrome: The "Toronto Protocol―at 11 years Journal of Clinical Oncology, 2015, 33, e12546-e12546.	1.6	0
243	Incidence of second primary cancers with pediatric high grade glioma: Single institution experience Journal of Clinical Oncology, 2015, 33, e21023-e21023.	1.6	0
244	Imaging of metastatic medulloblastoma in the molecular era Journal of Clinical Oncology, 2016, 34, e22003-e22003.	1.6	0
245	Molecular alterations to predict survival and response to chemotherapy of pediatric low-grade glioma Journal of Clinical Oncology, 2017, 35, 10503-10503.	1.6	0
246	Neurocognitive outcome in children with sensorineural hearing loss after treatment of malignant embryonal brain tumors Journal of Clinical Oncology, 2017, 35, 2029-2029.	1.6	0
247	Epigenetic regulation of cancer self-renewal differs between endocrine tumors Journal of Clinical Oncology, 2017, 35, e15717-e15717.	1.6	0
248	RARE-17. SURVIVAL BENEFIT FOR INDIVIDUALS WITH CONSTITUTIONAL MISMATCH REPAIR DEFICIENCY SYNDROME AND BRAIN TUMORS WHO UNDERGO SURVEILLANCE PROTOCOL. A REPORT FROM THE INTERNATIONAL REPLICATION REPAIR CONSORTIUM. Neuro-Oncology, 2020, 22, iii445-iii446.	1.2	0
249	MODL-25. REPLICATION REPAIR DEFICIENT MOUSE MODELS PROVIDE INSIGHT ON HYPERMUTANT BRAIN TUMOURS, MECHANISMS OF IMMUNE EVASION, AND COMBINATORIAL IMMUNOTHERAPY. Neuro-Oncology, 2020, 22, iii416-iii416.	1.2	0
250	LGG-13. THE CLINICAL AND MOLECULAR LANDSCAPE OF GLIOMAS IN ADOLESCENTS AND YOUNG ADULTS. Neuro-Oncology, 2020, 22, iii368-iii368.	1.2	0
251	RARE-55. CHALLENGES AND SPECIFIC STRATEGIES FOR CONSTITUTIONAL MISMATCH REPAIR DEFICIENCY SYNDROME IN LOW RESOURCE SETTINGS. ON BEHALF OF THE INTERNATIONAL RRD CONSORTIUM IN LOW RESOURCE SETTINGS PANEL. Neuro-Oncology, 2020, 22, iii454-iii454.	1.2	0
252	LGG-19. SPINAL LOW-GRADE GLIOMAS IN CANADIAN CHILDREN: A MULTI-CENTRE RETROSPECTIVE REVIEW. Neuro-Oncology, 2020, 22, iii369-iii370.	1.2	0

#	Article	IF	CITATIONS
253	LGG-34. CLINICAL AND MOLECULAR CHARACTERIZATION OF A MULTI-INSTITUTIONAL COHORT OF PEDIATRIC SPINAL CORD LOW-GRADE GLIOMAS. Neuro-Oncology, 2020, 22, iii373-iii373.	1.2	O
254	HGG-20. DIAGNOSTIC AND BIOLOGICAL ROLE OF METHYLATION PATTERNS IN REPLICATION REPAIR DEFICIENT HIGH GRADE GLIOMAS. Neuro-Oncology, 2020, 22, iii347-iii348.	1.2	0
255	LGG-50. INTEGRATED MOLECULAR AND CLINICAL ANALYSIS OF 1,000 PEDIATRIC LOW-GRADE GLIOMAS UNCOVERS NOVEL SUBGROUPS FOR CLINICAL RISK STRATIFICATION. Neuro-Oncology, 2020, 22, iii375-iii376.	1.2	0
256	PATH-14. GENETIC SUSCEPTIBILITY AND OUTCOMES OF PEDIATRIC, ADOLESCENT AND YOUNG ADULT IDH-MUTANT ASTROCYTOMAS. Neuro-Oncology, 2020, 22, iii427-iii427.	1.2	0
257	LGG-55. OUTCOME OF BRAF V600E PEDIATRIC GLIOMAS TREATED WITH TARGETED BRAF INHIBITION. Neuro-Oncology, 2020, 22, iii377-iii377.	1.2	0
258	CTNI-24. A PHASE 2 STUDY OF TRAMETINIB FOR PATIENTS WITH PEDIATRIC GLIOMA WITH ACTIVATION OF THE MAPK/ERK PATHWAY. TRAM-01. Neuro-Oncology, 2020, 22, ii47-ii47.	1.2	0
259	Clinical and economic impact of molecular testing for BRAF fusion in pediatric low-grade Glioma. BMC Pediatrics, 2022, 22, 13.	1.7	0
260	LGG-41. The clinical and molecular landscape of gliomas in adolescents and young adults. Neuro-Oncology, 2022, 24, i97-i97.	1.2	0
261	HGG-11. Clinical characteristics and clinical evolution of a large cohort of pediatric patients with primary central nervous system (CNS) tumors and tropomyosin receptor kinase (TRK) fusion Neuro-Oncology, 2022, 24, i61-i62.	1.2	0
262	Abstract LB188: Identification of intrinsic molecular vulnerabilities in inherited and treatment-related hypermutant patient-derived glioma cell line models. Cancer Research, 2022, 82, LB188-LB188.	0.9	0
263	Abstract LB177: Widespread hypertranscription in aggressive human cancer. Cancer Research, 2022, 82, LB177-LB177.	0.9	0
264	Clinical characteristics and outcome of a large cohort of patients with primary central nervous system (CNS) tumors and tropomyosin receptor kinase (TRK) fusion Journal of Clinical Oncology, 2022, 40, 2052-2052.	1.6	0