List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4797493/publications.pdf Version: 2024-02-01

FRANCESCO MALIRA

#	Article	IF	CITATIONS
1	DIS3 mutations in multiple myeloma impact the transcriptional signature and clinical outcome. Haematologica, 2022, 107, 921-932.	3.5	14
2	Chromothripsis as a pathogenic driver of multiple myeloma. Seminars in Cell and Developmental Biology, 2022, 123, 115-123.	5.0	22
3	Defining genomic events involved in the evolutionary trajectories of myeloma and its precursor conditions. Seminars in Oncology, 2022, , .	2.2	1
4	Bayesian networks elucidate complex genomic landscapes in cancer. Communications Biology, 2022, 5, 306.	4.4	5
5	Whole-genome sequencing reveals complex genomic features underlying anti-CD19 CAR T-cell treatment failures in lymphoma. Blood, 2022, 140, 491-503.	1.4	32
6	Structural variants shape the genomic landscape and clinical outcome of multiple myeloma. Blood Cancer Journal, 2022, 12, .	6.2	7
7	Designing Evolutionary-based Interception Strategies to Block the Transition from Precursor Phases to Multiple Myeloma. Clinical Cancer Research, 2021, 27, 15-23.	7.0	20
8	Initial Whole-Genome Sequencing of Plasma Cell Neoplasms in First Responders and Recovery Workers Exposed to the World Trade Center Attack of September 11, 2001. Clinical Cancer Research, 2021, 27, 2111-2118.	7.0	5
9	The molecular make up of smoldering myeloma highlights the evolutionary pathways leading to multiple myeloma. Nature Communications, 2021, 12, 293.	12.8	54
10	Positive selection as the unifying force for clonal evolution in multiple myeloma. Leukemia, 2021, 35, 1511-1515.	7.2	10
11	Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities. Nature Communications, 2021, 12, 1861.	12.8	68
12	mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies. Communications Biology, 2021, 4, 424.	4.4	21
13	Familial patterns of hematologic precursors. Blood, 2021, 137, 1992-1993.	1.4	0
14	The mutagenic impact of melphalan in multiple myeloma. Leukemia, 2021, 35, 2145-2150.	7.2	32
15	Dynamics of minimal residual disease in patients with multiple myeloma on continuous lenalidomide maintenance: a single-arm, single-centre, phase 2 trial. Lancet Haematology,the, 2021, 8, e422-e432.	4.6	50
16	Improving prognostic assignment in older adults with multiple myeloma using acquired genetic features, clonal hemopoiesis and telomere length. Leukemia, 2021, , .	7.2	8
17	Safety and Effectiveness of Weekly Carfilzomib, Lenalidomide, Dexamethasone, and Daratumumab Combination Therapy for Patients With Newly Diagnosed Multiple Myeloma. JAMA Oncology, 2021, 7, 862.	7.1	63
18	Copy number signatures predict chromothripsis and clinical outcomes in newly diagnosed multiple myeloma. Nature Communications, 2021, 12, 5172.	12.8	27

#	Article	IF	CITATIONS
19	Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma. Clinical Cancer Research, 2021, 27, 6479-6490.	7.0	9
20	<i>CDKN2A</i> deletion is a frequent event associated with poor outcome in patients with peripheral T-cell lymphoma not otherwise specified (PTCL-NOS). Haematologica, 2021, 106, 2918-2926.	3.5	18
21	Chemotherapy-Related Mutational Signatures Reveal the Origins of Therapy-Related Myeloid Neoplasms. Blood, 2021, 138, 3271-3271.	1.4	1
22	675â€Genomic drivers of large B-cell lymphoma resistance to CD19 CAR-T therapy. , 2021, 9, A703-A703.		0
23	Molecular Evolution of Classical Hodgkin Lymphoma Revealed Though Whole Genome Sequencing of Hodgkin and Reed-Sternberg Cells. Blood, 2021, 138, 805-805.	1.4	1
24	Combination Venetoclax and Selinexor Effective in Relapsed/Refractory Multiple Myeloma with Translocation t(11;14). Blood, 2021, 138, 2270-2270.	1.4	1
25	Role of AID in the temporal pattern of acquisition of driver mutations in multiple myeloma. Leukemia, 2020, 34, 1476-1480.	7.2	39
26	Moving From Cancer Burden to Cancer Genomics for Smoldering Myeloma. JAMA Oncology, 2020, 6, 425.	7.1	41
27	Accelerated single cell seeding in relapsed multiple myeloma. Nature Communications, 2020, 11, 3617.	12.8	41
28	Targeted genomic analysis of cutaneous T cell lymphomas identifies a subset with aggressive clinicopathological features. Blood Cancer Journal, 2020, 10, 116.	6.2	6
29	COVID-19 Infections and Clinical Outcomes in Patients with Multiple Myeloma in New York City: A Cohort Study from Five Academic Centers. Blood Cancer Discovery, 2020, 1, 234-243.	5.0	46
30	Baseline VDJ clonotype detection using a targeted sequencing NGS assay: allowing for subsequent MRD assessment. Blood Cancer Journal, 2020, 10, 76.	6.2	9
31	Revealing the Impact of Structural Variants in Multiple Myeloma. Blood Cancer Discovery, 2020, 1, 258-273.	5.0	81
32	Early Relapse Risk in Patients with Newly Diagnosed Multiple Myeloma Characterized by Next-generation Sequencing. Clinical Cancer Research, 2020, 26, 4832-4841.	7.0	33
33	IgCaller for reconstructing immunoglobulin gene rearrangements and oncogenic translocations from whole-genome sequencing in lymphoid neoplasms. Nature Communications, 2020, 11, 3390.	12.8	24
34	Second malignancies in multiple myeloma; emerging patterns and future directions. Best Practice and Research in Clinical Haematology, 2020, 33, 101144.	1.7	27
35	Reconstructing the evolutionary history of multiple myeloma. Best Practice and Research in Clinical Haematology, 2020, 33, 101145.	1.7	21
36	Minimal spatial heterogeneity in chronic lymphocytic leukemia at diagnosis. Leukemia, 2020, 34, 1929-1933.	7.2	2

#	Article	IF	CITATIONS
37	Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nature Genetics, 2020, 52, 306-319.	21.4	275
38	Timing the initiation of multiple myeloma. Nature Communications, 2020, 11, 1917.	12.8	99
39	The mutational landscape of normal human endometrial epithelium. Nature, 2020, 580, 640-646.	27.8	338
40	Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma. Blood Advances, 2020, 4, 830-844.	5.2	54
41	Whole-Genome Sequencing Reveals Evidence of Two Biologically and Clinically Distinct Entities: Progressive <i>Versus</i> Stable Myeloma Precursor Disease. Blood, 2020, 136, 47-48.	1.4	2
42	Long-Term Sustained Minimal Residual Disease (MRD) Negativity in Patients with Multiple Myeloma Treated with Continuous Lenalidomide Maintenance Therapy: A Clinical and Correlative Phase 2 Study. Blood, 2020, 136, 18-19.	1.4	0
43	A Pilot Study Evaluating Lenalidomide and CC-486 in Combination with Radiotherapy for Patients with Plasmacytoma (LENAZART study). Blood, 2020, 136, 8-10.	1.4	0
44	Revealing Transcriptome Deregulation upon Genomic Complexity in Multiple Myeloma. Blood, 2020, 136, 3-4.	1.4	0
45	Weekly Carfilzomib, Lenalidomide, Dexamethasone and Daratumumab (wKRd-D) Combination Therapy in Newly Diagnosed Multiple Myeloma: Final Results from a Clinical and Correlative Phase 2 Study. Blood, 2020, 136, 7-7.	1.4	1
46	Influence of Aging Processes on the Biology and Outcome of Multiple Myeloma. Blood, 2020, 136, 8-9.	1.4	2
47	The Genomic Complexity of Multiple Myeloma Precursor Disease Can be Predicted Using Copy Number Signatures on Targeted Sequencing and SNP Array Data. Blood, 2020, 136, 10-10.	1.4	1
48	Initial Whole Genome Sequencing of Plasma Cell Neoplasms in First Responders and Recovery Workers Exposed to the World Trade Center Attack of September 11, 2001. Blood, 2020, 136, 50-51.	1.4	0
49	Copy Number Signatures Predict Chromothripsis and Poor Clinical Outcome in Newly Diagnosed Multiple Myeloma Patients. Blood, 2020, 136, 52-53.	1.4	2
50	Duration of Post-Autologous Hematopoietic Cell Transplant Anemia and Thrombocytopenia Are Associated with Prolonged Hospital Length-of-Stay for Multiple Myeloma Patients. Blood, 2020, 136, 5-6.	1.4	0
51	A practical guide for mutational signature analysis in hematological malignancies. Nature Communications, 2019, 10, 2969.	12.8	145
52	Stability and uniqueness of clonal immunoglobulin CDR3 sequences for MRD tracking in multiple myeloma. American Journal of Hematology, 2019, 94, 1364-1373.	4.1	22
53	Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature Communications, 2019, 10, 3835.	12.8	183
54	Integration of transcriptional and mutational data simplifies the stratification of peripheral T ell lymphoma. American Journal of Hematology, 2019, 94, 628-634.	4.1	16

#	Article	IF	CITATIONS
55	Timing the initiation of multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e6-e7.	0.4	1
56	Comprehensive detection of recurring genomic abnormalities: a targeted sequencing approach for multiple myeloma. Blood Cancer Journal, 2019, 9, 101.	6.2	40
57	The Genomic and Transcriptomic Landscape of Double-Refractory Multiple Myeloma. Blood, 2019, 134, 3056-3056.	1.4	1
58	Long-Term Sustained Minimal Residual Disease (MRD) Negativity in Multiple Myeloma Patients Treated with Lenalidomide Maintenance Therapy: A Clinical and Correlative Phase 2 Study. Blood, 2019, 134, 3127-3127.	1.4	2
59	Weekly Carfilzomib, Lenalidomide, Dexamethasone and Daratumumab (wKRd-D) Combination Therapy Provides Unprecedented MRD Negativity Rates in Newly Diagnosed Multiple Myeloma: A Clinical and Correlative Phase 2 Study. Blood, 2019, 134, 862-862.	1.4	34
60	Revealing the Impact of Recurrent and Rare Structural Variations in Multiple Myeloma. Blood, 2019, 134, 576-576.	1.4	5
61	Using Current Clinical Markers to Define High Risk Smoldering Multiple Myeloma: Agree to Disagree. Blood, 2019, 134, 1794-1794.	1.4	0
62	Timing the Initiation of Multiple Myeloma. Blood, 2019, 134, 573-573.	1.4	0
63	Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal. Cell, 2018, 173, 611-623.e17.	28.9	398
64	Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia, 2018, 32, 2604-2616.	7.2	137
65	Genomic patterns of progression in smoldering multiple myeloma. Nature Communications, 2018, 9, 3363.	12.8	163
66	Whole Genome Sequencing Reveals Recurrent Structural Driver Events in Peripheral T-Cell Lymphomas Not Otherwise Specified. Blood, 2018, 132, 4115-4115.	1.4	0
67	Nextâ€generation sequencing of a family with a high penetrance of monoclonal gammopathies for the identification of candidate risk alleles. Cancer, 2017, 123, 3701-3708.	4.1	12
68	Immune Thrombocytopenia in Patients with Chronic Lymphocytic Leukemia Is Associated with Stereotyped B-Cell Receptors. Blood, 2011, 118, 2847-2847.	1.4	0
69	Timing the Initiation of Multiple Myeloma. SSRN Electronic Journal, 0, , .	0.4	4