
Daniela Carnevale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4797082/publications.pdf Version: 2024-02-01

DANIELA CADNEVALE

#	Article	lF	CITATIONS
1	Editorial: Involvement of Blood Brain Barrier Efficacy, Neurovascular Coupling, and Angiogenesis in the Healthy and Diseased Brain, Volume II. Frontiers in Physiology, 2022, 13, 829901.	2.8	0
2	Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nature Reviews Cardiology, 2022, 19, 379-394.	13.7	21
3	Neuroimmune cardiovascular interfaces control atherosclerosis. Nature, 2022, 605, 152-159.	27.8	86
4	Neuroimmune interactions in cardiovascular diseases. Cardiovascular Research, 2021, 117, 402-410.	3.8	18
5	A neurohumoral activation of renin-angiotensin-aldosterone system in endothelial dysfunction modulating immunity in heart failure. Cardiovascular Research, 2021, 117, 9-10.	3.8	0
6	Ultrasound-guided catheter implantation improves conscious radiotelemetric blood pressure measurement in mice. Cardiovascular Research, 2021, 117, 661-662.	3.8	2
7	The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanismsâ€ı current progress, challenges, and charting the future. Bioelectronic Medicine, 2021, 7, 7.	2.3	5
8	Brain Areas Involved in Modulating the Immune Response Participating in Hypertension and Its Target Organ Damage. Antioxidants and Redox Signaling, 2021, 35, 1515-1530.	5.4	5
9	Chronic 3D Vascular-Immune Interface Established by Coculturing Pressurized Resistance Arteries and Immune Cells. Hypertension, 2021, 78, 1648-1661.	2.7	7
10	Editorial: Involvement of Blood Brain Barrier Efficacy, Neurovascular Coupling and Angiogenesis in the Healthy and Diseased Brain. Frontiers in Physiology, 2021, 12, 771069.	2.8	0
11	Could the Hispanic Population Benefit More of Intensive Blood Pressure Control to Reduce the Occurrence of Dementia?. Hypertension, 2021, 78, 1667-1668.	2.7	0
12	Brain Functional Magnetic Resonance Imaging Highlights Altered Connections and Functional Networks in Patients With Hypertension. Hypertension, 2020, 76, 1480-1490.	2.7	38
13	Neural Control of Immunity in Hypertension: Council on Hypertension Mid Career Award for Research Excellence, 2019. Hypertension, 2020, 76, 622-628.	2.7	18
14	Celiac Vagus Nerve Stimulation Recapitulates Angiotensin II-Induced Splenic Noradrenergic Activation, Driving Egress of CD8 Effector Cells. Cell Reports, 2020, 33, 108494.	6.4	22
15	Identification of a brainstem locus that inhibits tumor necrosis factor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29803-29810.	7.1	76
16	The "hidden side of the moon―in hypertension: When and why is dangerous low diastolic blood pressure?. International Journal of Cardiology, 2019, 276, 268-270.	1.7	2
17	The Interactions of the Immune System and the Brain in Hypertension. Current Hypertension Reports, 2018, 20, 7.	3.5	9
18	Deoxycorticosterone acetate-salt hypertension activates placental growth factor in the spleen to couple sympathetic drive and immune system activation. Cardiovascular Research, 2018, 114, 456-467.	3.8	33

DANIELA CARNEVALE

#	Article	IF	CITATIONS
19	PI3Kinases in Diabetes Mellitus and Its Related Complications. International Journal of Molecular Sciences, 2018, 19, 4098.	4.1	33
20	Loss of EMILIN-1 Enhances Arteriolar Myogenic Tone Through TGF-Î ² (Transforming Growth) Tj ETQq0 0 0 rgBT / Hypertension in Mice and Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2484-2497.	Overlock 1 2.4	0 Tf 50 712 T 19
21	Heart, Spleen, Brain. Circulation, 2018, 138, 1917-1919.	1.6	14
22	Brain MRI fiber-tracking reveals white matter alterations in hypertensive patients without damage at conventional neuroimaging. Cardiovascular Research, 2018, 114, 1536-1546.	3.8	31
23	Mechanical stretch on endothelial cells interconnects innate and adaptive immune response in hypertension. Cardiovascular Research, 2018, 114, 1432-1434.	3.8	7
24	Targeting Interleukin-1β Protects from Aortic Aneurysms Induced by Disrupted Transforming Growth Factor β Signaling. Immunity, 2017, 47, 959-973.e9.	14.3	43
25	PI3KÎ ³ Inhibition Protects Against Diabetic Cardiomyopathy in Mice. Revista Espanola De Cardiologia (English Ed), 2017, 70, 16-24.	0.6	8
26	The Spleen: A Hub Connecting Nervous and Immune Systems in Cardiovascular and Metabolic Diseases. International Journal of Molecular Sciences, 2017, 18, 1216.	4.1	41
27	Hypertension and Dementia: Epidemiological and Experimental Evidence Revealing a Detrimental Relationship. International Journal of Molecular Sciences, 2016, 17, 347.	4.1	51
28	The Multifaceted Roles of PI3KÎ ³ in Hypertension, Vascular Biology, and Inflammation. International Journal of Molecular Sciences, 2016, 17, 1858.	4.1	14
29	Hemorrhagic transformation of acute ischemic stroke is limited in hypertensive patients with cardiac hypertrophy. International Journal of Cardiology, 2016, 219, 362-366.	1.7	4
30	Immunological Aspects of Hypertension. High Blood Pressure and Cardiovascular Prevention, 2016, 23, 91-95.	2.2	6
31	A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nature Communications, 2016, 7, 13035.	12.8	103
32	Pathophysiological Links Among Hypertension and Alzheimer's Disease. High Blood Pressure and Cardiovascular Prevention, 2016, 23, 3-7.	2.2	39
33	Abstract 300: Pathogenetic Mechanisms of Thoracic Aortic Aneurysm in a Smad4 Mutant Mouse Model: Identification of New Molecular Targets for Pharmacological Therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
34	Abstract 169: Hypertension Down Regulates Emilin1 in the Extracellular Matrix of Resistance Arteries in Humans and Mice, in Order to Increase the Myogenic Tone Through Overactive TGFÎ ² , Thus Contributing to Blood Pressure Regulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
35	Lack of kinaseâ€independent activity of PI3Kγ in locus coeruleus induces ADHD symptoms through increased CREB signaling. EMBO Molecular Medicine, 2015, 7, 904-917.	6.9	38
36	TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice. Molecular Metabolism, 2015, 4, 741-752.	6.5	23

DANIELA CARNEVALE

#	Article	IF	CITATIONS
37	PIGF, immune system and hypertension. Oncotarget, 2015, 6, 18246-18247.	1.8	2
38	Abstract 251: Selective Deletion of Smad4 in Smooth Muscle Cells Causes Thoracic Aortic Aneurysm in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
39	Combined inhibition of PI3Kβ and PI3Kγ reduces fat mass by enhancing α-MSH–dependent sympathetic drive. Science Signaling, 2014, 7, ra110.	3.6	31
40	The Angiogenic Factor PIGF Mediates a Neuroimmune Interaction in the Spleen to Allow the Onset of Hypertension. Immunity, 2014, 41, 737-752.	14.3	93
41	Abstract 19932: A Neuroimmune Drive Activates Plgf to Control an Epigenetic Mechanism in the Spleen That Allows T Cells Activation in Hypertension. Circulation, 2014, 130, .	1.6	0
42	Abstract 511: Emilin1 Controls Myogenic Response of Resistance Arteries by Modulation of TRPC6 Through the TGFß/ALK5/ADAM17/EGFR Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
43	G-Protein-Coupled Receptor Kinases in Hypertension. High Blood Pressure and Cardiovascular Prevention, 2013, 20, 3-4.	2.2	0
44	Angiotensin (1–7) counteracts the negative effect of angiotensin II on insulin signalling in HUVECs. Cardiovascular Research, 2013, 99, 129-136.	3.8	29
45	Abstract 562: Plgf is Crucial for the Hypertensive Response and T Cells Infiltration in Target Organs Induced by Angii. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
46	Vascular Smooth Muscle Emilin-1 Is a Regulator of Arteriolar Myogenic Response and Blood Pressure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2178-2184.	2.4	33
47	PI3KÂ in hypertension: a novel therapeutic target controlling vascular myogenic tone and target organ damage. Cardiovascular Research, 2012, 95, 403-408.	3.8	33
48	PI3Kγ inhibition reduces blood pressure by a vasorelaxant Akt/L-type calcium channel mechanism. Cardiovascular Research, 2012, 93, 200-209.	3.8	43
49	Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiology of Aging, 2012, 33, 205.e19-205.e29.	3.1	83
50	Placental Growth Factor and Cardiac Inflammation. Trends in Cardiovascular Medicine, 2012, 22, 209-212.	4.9	19
51	Hypertension Induces Brain Î ² -Amyloid Accumulation, Cognitive Impairment, and Memory Deterioration Through Activation of Receptor for Advanced Glycation End Products in Brain Vasculature. Hypertension, 2012, 60, 188-197.	2.7	199
52	Chronic Type A aortic dissection: could surgical intervention be guided by molecular markers?. Journal of Cellular and Molecular Medicine, 2011, 15, 1615-1619.	3.6	14
53	Distinct Effects of Leukocyte and Cardiac Phosphoinositide 3-Kinase γ Activity in Pressure Overload–Induced Cardiac Failure. Circulation, 2011, 123, 391-399.	1.6	65
54	â€~Alzheimer-like' pathology in a murine model of arterial hypertension. Biochemical Society Transactions, 2011, 39, 939-944.	3.4	30

DANIELA CARNEVALE

#	Article	IF	CITATIONS
55	IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload. Cardiovascular Research, 2011, 91, 456-464.	3.8	76
56	Placental Growth Factor Regulates Cardiac Inflammation Through the Tissue Inhibitor of Metalloproteinases-3/Tumor Necrosis Factor-α–Converting Enzyme Axis. Circulation, 2011, 124, 1337-1350.	1.6	57
57	Greater resistance to inflammation at adulthood could contribute to extended life span of p66Shcâ^'/â^' mice. Experimental Gerontology, 2010, 45, 343-350.	2.8	16
58	Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease. Behavioural Brain Research, 2010, 208, 137-143.	2.2	45
59	Hypertension and Cerebrovascular Dysfunction. High Blood Pressure and Cardiovascular Prevention, 2010, 17, 191-200.	2.2	4
60	Pressure-Induced Vascular Oxidative Stress Is Mediated Through Activation of Integrin-Linked Kinase 1/βPIX/Rac-1 Pathway. Hypertension, 2009, 54, 1028-1034.	2.7	67
61	Tumor Necrosis Factor-α Mediates Hemolysis-Induced Vasoconstriction and the Cerebral Vasospasm Evoked by Subarachnoid Hemorrhage. Hypertension, 2009, 54, 150-156.	2.7	70
62	Microglia-Neuron Interaction in Inflammatory and Degenerative Diseases: Role of Cholinergic and Noradrenergic Systems. CNS and Neurological Disorders - Drug Targets, 2007, 6, 388-397.	1.4	133
63	NGF promotes microglial migration through the activation of its high affinity receptor: Modulation by TGF-β. Journal of Neuroimmunology, 2007, 190, 53-60.	2.3	51
64	Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. Journal of Neuroinflammation, 2005, 2, 4.	7.2	209