Mikaël M Martino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4795227/publications.pdf

Version: 2024-02-01

45 papers 5,784 citations

30 h-index 243625 44 g-index

45 all docs

45 docs citations

45 times ranked

8810 citing authors

#	Article	IF	CITATIONS
1	Promoting tissue regeneration by modulating the immune system. Acta Biomaterialia, 2017, 53, 13-28.	8.3	537
2	Growth Factors Engineered for Super-Affinity to the Extracellular Matrix Enhance Tissue Healing. Science, 2014, 343, 885-888.	12.6	406
3	Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4563-4568.	7.1	401
4	Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing. Science Translational Medicine, 2011, 3, 100ra89.	12.4	391
5	Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Advances in Wound Care, 2018, 7, 209-231.	5.1	350
6	Engineering the Regenerative Microenvironment with Biomaterials. Advanced Healthcare Materials, 2013, 2, 57-71.	7.6	329
7	Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials, 2009, 30, 1089-1097.	11.4	300
8	In situ cell manipulation through enzymatic hydrogel photopatterning. Nature Materials, 2013, 12, 1072-1078.	27.5	282
9	The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB Journal, 2010, 24, 4711-4721.	0.5	259
10	Biomimetic materials in tissue engineering. Materials Today, 2010, 13, 14-22.	14.2	251
11	Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 2015, 94, 41-52.	13.7	214
12	Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Frontiers in Immunology, 2018, 9, 585.	4.8	214
13	Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Advances in Wound Care, 2015, 4, 479-489.	5.1	187
14	Extracellular Matrix and Growth Factor Engineering for Controlled Angiogenesis in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2015, 3, 45.	4.1	159
15	Growth Factor Engineering Strategies for Regenerative Medicine Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 469.	4.1	152
16	Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF $<$ sub $>$ 164 $<$ /sub $>$. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6952-6957.	7.1	136
17	Design principles for therapeutic angiogenic materials. Nature Reviews Materials, 2016, 1 , .	48.7	125
18	Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature, 2021, 591, 281-287.	27.8	111

#	Article	IF	CITATIONS
19	Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nature Communications, 2016, 7, 11051.	12.8	104
20	Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Biomaterials, 2013, 34, 704-712.	11.4	102
21	Nociceptors Boost the Resolution of Fungal Osteoinflammation via the TRP Channel-CGRP-Jdp2 Axis. Cell Reports, 2017, 19, 2730-2742.	6.4	75
22	Proangiogenic Hydrogels Within Macroporous Scaffolds Enhance Islet Engraftment in an Extrahepatic Site. Tissue Engineering - Part A, 2013, 19, 2544-2552.	3.1	69
23	PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine, 2011, 29, 804-812.	3.8	64
24	Fibrin gels engineered with proâ€angiogenic growth factors promote engraftment of pancreatic islets in extrahepatic sites in mice. Biotechnology and Bioengineering, 2015, 112, 1916-1926.	3.3	56
25	Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Experimental Cell Research, 2017, 357, 192-201.	2.6	55
26	Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nature Biomedical Engineering, 2020, 4, 463-475.	22.5	53
27	Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. Journal of Experimental Medicine, 2013, 210, 1947-1960.	8.5	49
28	The TLR4 Agonist Fibronectin Extra Domain A is Cryptic, Exposed by Elastase-2; use in a fibrin matrix cancer vaccine. Scientific Reports, 2015, 5, 8569.	3.3	43
29	The ATP Transporter VNUT Mediates Induction of Dectin-1-Triggered Candida Nociception. IScience, 2018, 6, 306-318.	4.1	43
30	The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165. Biomaterials, 2013, 34, 5958-5968.	11.4	39
31	Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist. Communications Biology, 2021, 4, 422.	4.4	28
32	Fibronectin Binding Modulates CXCL11 Activity and Facilitates Wound Healing. PLoS ONE, 2013, 8, e79610.	2.5	26
33	Bone-protective Functions of Netrin 1 Protein. Journal of Biological Chemistry, 2016, 291, 23854-23868.	3.4	25
34	Evaluation of Injectable Constructs for Bone Repair with a Subperiosteal Cranial Model in the Rat. PLoS ONE, 2013, 8, e71683.	2.5	22
35	Bioluminescent and micro-computed tomography imaging of bone repair induced by fibrin-binding growth factors. Acta Biomaterialia, 2014, 10, 4377-4389.	8.3	21
36	Immune Regulation of Tissue Repair and Regeneration via miRNAsâ€"New Therapeutic Target. Frontiers in Bioengineering and Biotechnology, 2018, 6, 98.	4.1	21

#	Article	IF	CITATIONS
37	The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factorâ€binding domain. FASEB Journal, 2010, 24, 4711-4721.	0.5	16
38	Enhancing the regenerative effectiveness of growth factors by local inhibition of interleukin-1 receptor signaling. Science Advances, 2020, 6, eaba7602.	10.3	16
39	5-Azacytidine-induced Protein 2 (AZI2) Regulates Bone Mass by Fine-tuning Osteoclast Survival. Journal of Biological Chemistry, 2015, 290, 9377-9386.	3.4	13
40	Modulation of the Activity of Stem and Progenitor Cells by Immune Cells. Stem Cells Translational Medicine, 2022, 11, 248-258.	3.3	12
41	Editorial: Vascularization for Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2018, 6, 175.	4.1	10
42	Zinc Finger Protein St18 Protects against Septic Death by Inhibiting VEGF-A from Macrophages. Cell Reports, 2020, 32, 107906.	6.4	7
43	Nociceptor-derived Reg $3\hat{l}^3$ prevents endotoxic death by targeting kynurenine pathway in microglia. Cell Reports, 2022, 38, 110462.	6.4	6
44	Netrins as prophylactic targets in skeletal diseases: A double-edged sword?. Pharmacological Research, 2017, 122, 46-52.	7.1	4
45	Controlled Release Strategies in Tissue Engineering. , 2014, , 347-392.		1