Xiangpei Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794994/publications.pdf

Version: 2024-02-01

331670 377865 2,093 34 21 34 h-index citations g-index papers 35 35 35 2551 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How plants discern friends from foes. Trends in Plant Science, 2022, 27, 107-109.	8.8	2
2	Light participates in the auxinâ€dependent regulation of plant growth. Journal of Integrative Plant Biology, 2021, 63, 819-822.	8.5	15
3	Cellâ€ŧype action specificity of auxin on <i>Arabidopsis</i> root growth. Plant Journal, 2021, 106, 928-941.	5.7	11
4	The Arabidopsis Root Tip (Phospho)Proteomes at Growth-Promoting versus Growth-Repressing Conditions Reveal Novel Root Growth Regulators. Cells, 2021, 10, 1665.	4.1	8
5	Nonâ€canonical <scp>AUX</scp> / <scp>IAA</scp> protein <scp>IAA</scp> 33 competes with canonical <scp>AUX</scp> / <scp>IAA</scp> repressor <scp>IAA</scp> 5 to negatively regulate auxin signaling. EMBO Journal, 2020, 39, e101515.	7.8	62
6	Antagonistic Interaction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis. Cell Reports, 2020, 32, 108060.	6.4	38
7	Initiation and maintenance of plant stem cells in root and shoot apical meristems. ABIOTECH, 2020, 1, 194-204.	3.9	11
8	AtHB7/12 Regulate Root Growth in Response to Aluminum Stress. International Journal of Molecular Sciences, 2020, 21, 4080.	4.1	19
9	Plant Sense: The Rise of Calcium Channels. Trends in Plant Science, 2020, 25, 838-841.	8.8	14
10	Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 2020, 15, 755-760.	31.5	619
11	PIFs coordinate shade avoidance by inhibiting auxin repressor <i>ARF18</i> and metabolic regulator <i>QQS</i> . New Phytologist, 2020, 228, 609-621.	7. 3	29
12	PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana. PLoS Genetics, 2020, 16, e1008044.	3.5	34
13	The Root Transition Zone: A Hot Spot for Signal Crosstalk. Trends in Plant Science, 2018, 23, 403-409.	8.8	78
14	PHB3 Maintains Root Stem Cell Niche Identity through ROS-Responsive AP2/ERF Transcription Factors in Arabidopsis. Cell Reports, 2018, 22, 1350-1363.	6.4	128
15	RLCKs Bridge Plant Immune Receptors and MAPK Cascades. Trends in Plant Science, 2018, 23, 1039-1041.	8.8	16
16	ROS: The Fine-Tuner of Plant Stem Cell Fate. Trends in Plant Science, 2018, 23, 850-853.	8.8	44
17	Ethylene promotes cadmiumâ€induced root growth inhibition through <scp>ElN3</scp> controlled <scp><i>XTH33</i></scp> and <scp><i>LSU1</i></scp> expression in <scp><i>Arabidopsis</i></scp> . Plant, Cell and Environment, 2018, 41, 2449-2462.	5.7	44
18	Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Plant Physiology and Biochemistry, 2016, 109, 467-481.	5.8	34

#	Article	IF	CITATIONS
19	26S Proteasome: Hunter and Prey in Auxin Signaling. Trends in Plant Science, 2016, 21, 546-548.	8.8	10
20	Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions. PLoS ONE, 2015, 10, e0124032.	2.5	69
21	WOX5 is Shining in the Root Stem Cell Niche. Trends in Plant Science, 2015, 20, 601-603.	8.8	45
22	Comparative Transcriptome Profiling of the Maize Primary, Crown and Seminal Root in Response to Salinity Stress. PLoS ONE, 2015, 10, e0121222.	2.5	31
23	In silico analysis of PHB gene family in maize. Plant Growth Regulation, 2014, 73, 181-191.	3.4	9
24	D53: The Missing Link in Strigolactone Signaling. Molecular Plant, 2014, 7, 761-763.	8.3	6
25	Designer crops: optimal root system architecture for nutrient acquisition. Trends in Biotechnology, 2014, 32, 597-598.	9.3	66
26	System analysis of micro <scp>RNA</scp> s in the development and aluminium stress responses of the maize root system. Plant Biotechnology Journal, 2014, 12, 1108-1121.	8.3	47
27	Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics, 2013, 14, 433.	2.8	179
28	Identification of mitogen-activated protein kinase kinase gene family and MKK–MAPK interaction network in maize. Biochemical and Biophysical Research Communications, 2013, 441, 964-969.	2.1	69
29	Genome-Wide Identification and Analysis of Expression Profiles of Maize Mitogen-Activated Protein Kinase Kinase Kinase. PLoS ONE, 2013, 8, e57714.	2.5	64
30	Recent Insights into Brassinosteroid Signaling in Plants: Its Dual Control of Plant Immunity and Stomatal Development. Molecular Plant, 2012, 5, 1179-1181.	8.3	16
31	<i>ZmMKK4</i> , a novel group C mitogenâ€activated protein kinase kinase in maize (<i>Zea mays</i>), confers salt and cold tolerance in transgenic <i>Arabidopsis</i> . Plant, Cell and Environment, 2011, 34, 1291-1303.	5.7	167
32	Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regulation, 2011, 65, 109-118.	3.4	53
33	Hydrogen peroxide is not involved in HrpN from Erwinia amylovora-induced hypersensitive cell death in maize leaves. Plant Cell Reports, 2011, 30, 1273-1279.	5.6	11
34	ZmMKK4 regulates osmotic stress through reactive oxygen species scavenging in transgenic tobacco. Plant Cell Reports, 2011, 30, 2097-2104.	5.6	43