
Tian-Ran Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4794594/publications.pdf Version: 2024-02-01

TIAN-RAN WEI

#	Article	IF	CITATIONS
1	Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-Ag Te1-2S Se. Acta Materialia, 2022, 224, 117512.	7.9	36
2	Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. Journal of Materiomics, 2022, 8, 656-661.	5.7	31
3	Novel meta-phase arising from large atomic size mismatch. Matter, 2022, 5, 605-615.	10.0	20
4	A Fully Flexible Intelligent Thermal Touch Panel Based on Intrinsically Plastic Ag ₂ S Semiconductor. Advanced Materials, 2022, 34, e2107479.	21.0	23
5	Structural Modularization of Cu ₂ Te Leading to High Thermoelectric Performance near the Mott–loffe–Regel Limit. Advanced Materials, 2022, 34, e2108573.	21.0	20
6	Data-driven discovery of high-performance multicomponent solid solution thermoelectric materials. Materials Today Energy, 2022, 28, 101070.	4.7	1
7	Roomâ€temperature plastic inorganic semiconductors for flexible and deformable electronics. InformaÄnÃ-Materiály, 2021, 3, 22-35.	17.3	55
8	Ductile Ag ₂₀ S ₇ Te ₃ with Excellent Shapeâ€Conformability and High Thermoelectric Performance. Advanced Materials, 2021, 33, e2007681.	21.0	65
9	pâ€Type Plastic Inorganic Thermoelectric Materials. Advanced Energy Materials, 2021, 11, 2100883.	19.5	40
10	Thermoelectric materials with crystal-amorphicity duality induced by large atomic size mismatch. Joule, 2021, 5, 1183-1195.	24.0	27
11	Memory of pressure-induced superconductivity in a phase-change alloy. Physical Review B, 2021, 103, .	3.2	7
12	Thermoelectrics: pâ€Type Plastic Inorganic Thermoelectric Materials (Adv. Energy Mater. 23/2021). Advanced Energy Materials, 2021, 11, 2170086.	19.5	4
13	A low-cost and eco-friendly Br-doped Cu ₇ Sn ₃ S ₁₀ thermoelectric compound with <i>zT</i> around unity. Journal of Materials Chemistry A, 2021, 9, 7946-7954.	10.3	23
14	Efficient lanthanide Gd doping promoting the thermoelectric performance of Mg ₃ Sb ₂ -based materials. Journal of Materials Chemistry A, 2021, 9, 25944-25953.	10.3	19
15	Thermoelectric Ag ₂ Se: Imperfection, Homogeneity, and Reproducibility. ACS Applied Materials & Interfaces, 2021, 13, 60192-60199.	8.0	28
16	Decoupling Thermoelectric Performance and Stability in Liquid‣ike Thermoelectric Materials. Advanced Science, 2020, 7, 1901598.	11.2	36
17	Conformal organic–inorganic semiconductor composites for flexible thermoelectrics. Energy and Environmental Science, 2020, 13, 511-518.	30.8	67
18	Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science, 2020, 369, 542-545.	12.6	163

TIAN-RAN WEI

#	Article	IF	CITATIONS
19	Discovery of high-performance thermoelectric copper chalcogenide using modified diffusion-couple high-throughput synthesis and automated histogram analysis technique. Energy and Environmental Science, 2020, 13, 3041-3053.	30.8	43
20	Cu ₂ Se-Based liquid-like thermoelectric materials: looking back and stepping forward. Energy and Environmental Science, 2020, 13, 3307-3329.	30.8	106
21	Number mismatch between cations and anions as an indicator for low lattice thermal conductivity in chalcogenides. Npj Computational Materials, 2020, 6, .	8.7	13
22	Anion-site-modulated thermoelectric properties in Ge2Sb2Te5-based compounds. Rare Metals, 2020, 39, 1127-1133.	7.1	12
23	Copper chalcogenide thermoelectric materials. Science China Materials, 2019, 62, 8-24.	6.3	111
24	Largely Enhanced Seebeck Coefficient and Thermoelectric Performance by the Distortion of Electronic Density of States in Ge ₂ Sb ₂ Te ₅ . ACS Applied Materials & Interfaces, 2019, 11, 34046-34052.	8.0	38
25	Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy and Environmental Science, 2019, 12, 2983-2990.	30.8	188
26	Thermoelectric properties of non-stoichiometric Cu2+ <i>x</i> Sn1â^' <i>x</i> S3 compounds. Journal of Applied Physics, 2019, 126, .	2.5	35
27	Thermoelectric properties of n-type Cu ₄ Sn ₇ S ₁₆ -based compounds. RSC Advances, 2019, 9, 7826-7832.	3.6	26
28	Dopantâ€Dependent Increase in Seebeck Coefficient and Electrical Conductivity in Blended Polymers with Offset Carrier Energies. Advanced Electronic Materials, 2019, 5, 1800618.	5.1	34
29	Quasi-two-dimensional GeSbTe compounds as promising thermoelectric materials with anisotropic transport properties. Applied Physics Letters, 2019, 114, .	3.3	23
30	Comparing the role of annealing on the transport properties of polymorphous AgBiSe ₂ and monophase AgSbSe ₂ . RSC Advances, 2018, 8, 7055-7061.	3.6	16
31	How to Measure Thermoelectric Properties Reliably. Joule, 2018, 2, 2183-2188.	24.0	65
32	Low-cost and environmentally benign selenides as promising thermoelectric materials. Journal of Materiomics, 2018, 4, 304-320.	5.7	73
33	Enhanced thermoelectric performance of two dimensional MS2 (MÂ=ÂMo, W) through phase engineering. Journal of Materiomics, 2018, 4, 329-337.	5.7	21
34	Enhanced Thermoelectric Performance in n-Type Bi ₂ Te ₃ -Based Alloys via Suppressing Intrinsic Excitation. ACS Applied Materials & Interfaces, 2018, 10, 21372-21380.	8.0	76
35	Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties. Scientific Reports, 2017, 7, 43262.	3.3	71
36	Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe. Applied Physics Letters, 2017, 110, .	3.3	52

TIAN-RAN WEI

#	Article	IF	CITATIONS
37	Doping of thermoelectric PbSe with chemically inert secondary phase nanoparticles. Journal of Materials Chemistry C, 2017, 5, 10881-10887.	5.5	23
38	Processing of advanced thermoelectric materials. Science China Technological Sciences, 2017, 60, 1347-1364.	4.0	79
39	Nanoporous PbSe–SiO ₂ Thermoelectric Composites. Advanced Science, 2017, 4, 1700199.	11.2	39
40	Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric <i>p</i> -Type Polycrystalline SnSe. Journal of the American Chemical Society, 2016, 138, 8875-8882.	13.7	298
41	Mechanical Alloying and Spark Plasma Sintering of BiCuSeO Oxyselenide: Synthesis Process and Thermoelectric Properties. Journal of the American Ceramic Society, 2016, 99, 507-514.	3.8	18
42	Enhancing average <i>ZT</i> in pristine PbSe by over-stoichiometric Pb addition. APL Materials, 2016, 4, 104801.	5.1	32
43	High thermoelectric performance of all-oxide heterostructures with carrier double-barrier filtering effect. NPG Asia Materials, 2015, 7, e182-e182.	7.9	32
44	Low thermal conductivity of Bi2Mo2O9 ceramics. Journal of Alloys and Compounds, 2015, 646, 298-302.	5.5	3
45	Electrical and thermal transport properties of Pb _{1â^'x} Sn _x Se solid solution thermoelectric materials. Physical Chemistry Chemical Physics, 2015, 17, 13006-13012.	2.8	40
46	Mechanically enhanced p- and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 197, 75-81.	3.5	69
47	ls Cu ₃ SbSe ₃ a promising thermoelectric material?. RSC Advances, 2015, 5, 42848-42854.	3.6	27
48	Thermoelectric transport properties of pristine and Na-doped SnSe _{1â^'x} Te _x polycrystals. Physical Chemistry Chemical Physics, 2015, 17, 30102-30109.	2.8	154
49	Electrical and thermal transport properties of spark plasma sintered n-type Bi ₂ Te _{3â^'x} Se _x alloys: the combined effect of point defect and Se content. Journal of Materials Chemistry C, 2015, 3, 10583-10589.	5.5	122
50	PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion. Applied Physics Letters, 2014, 104, .	3.3	42
51	Enhanced Thermoelectric Performance of Nonstoichiometric Compounds Cu3â^'x SbSe4 by Cu Deficiencies. Journal of Electronic Materials, 2014, 43, 2229-2238.	2.2	41
52	Thermal stability and oxidation resistance of BiCuSeO based thermoelectric ceramics. Journal of Alloys and Compounds, 2014, 614, 394-400.	5.5	44
53	Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A, 2014, 2, 17302-17306.	10.3	246
54	Thermoelectric properties of Sn-doped p-type Cu ₃ SbSe ₄ : a compound with large effective mass and small band gap. Journal of Materials Chemistry A, 2014, 2, 13527-13533.	10.3	112

#	Article	IF	CITATIONS
55	Composition optimization of p-type AgSn m SbTe m +2 thermoelectric materials synthesized by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2014, 615, 451-455.	5.5	15
56	Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. Journal of Materials Chemistry A, 2013, 1, 11942.	10.3	128
57	Plastic Inorganic Semiconductors for Flexible Electronics. , 0, , .		0